PROJECT CONCEPT STATEMENT

Bridge on Iowa Highway 9
Over the North Branch of the Turkey River

Howard County
Project \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Maint. No. 4534.7S009
FHWA No. 28760
Prepared for:
Iowa Department of Transportation
District 2
Nick Humpal, P.E.
Prepared by: Snyder \& Associates, Inc. / Shuck-Britson, Inc.
December 3, 2019

I. STUDY AREA

A. Project Description

This project involves replacement of the Iowa Highway 9 bridge over the North Branch of the Turkey River (Maintenance No. 4534.7S009), approximately 4.3 miles east of U.S. Highway 63, in Howard County.

B. Present Facility--Need for Project

The existing bridge is a 75 ’ x 28’ continuous concrete slab bridge with vertical wall abutments built in 1959 to replace a 75’ x 20’ pony truss bridge constructed in 1919. Neither the 1919 bridge nor the 1959 bridge was built with a skew. Past repairs done under contract have consisted of a low-slump concrete overlay (1987) and retrofit of the barrier rails (1987 \& 2005).

The sixty year old bridge was last inspected in April, 2019 and has deck, superstructure and substructure condition ratings of 5,5 and 5 , respectively, on a scale of 0 to 9 . A rating of ' 4 ' or less on any of the condition ratings would make the bridge "Structural Deficient". Maintenance and repairs have been made over the years to extend the life of the bridge. Repairs done to typical bridges with this current level of condition ratings are often an exercise in diminishing returns. It is likely that at least one of the condition ratings will drop to a ' 4 ' in the near future which would make the bridge both "Structurally Deficient" and eligible for federal funds through the Highway Bridge Replacement and Rehabilitation Program.

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 2
The bridge also has a Deck Geometry appraisal rating of ‘4’ on a scale of 0 to 9 determined by the roadway width on the bridge available for the Average Daily Traffic. Under old bridge deficiency procedures, a rating of ' 3 ' would have made the bridge "Functionally Obsolete".

For these reasons, the bridge is not a rehabilitation or widening candidate but should be held as a replacement candidate for a future letting. The bridge's expected replacement type and total project cost should be determined with this Project Concept phase.

East and west of the bridge, the roadway is a 24 foot wide paved rural section with 4 foot wide paved shoulders and 6 foot wide granular shoulders. Milled shoulder rumble strips are present in this area. Roadway foreslopes are 3:1, and the roadway was built without clear zone considerations.

Iowa 9 intersects with V46 approximately 1,350 feet west of the bridge location. This intersection has left turn lanes, and widening / tapers for the left turn lane ends just west of the bridge site. An entrance is present on the right side of the roadway approximately 230 feet east of the bridge.
C. Hydrology

StreamStats discharges are 5,520 cfs (50-year) and 6,520 (100-year) for the 20.6 square mile drainage area. USGS Gage 05411530 was put into service in 1966 and its last peak measurement was in 1993.

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 3
The bridge is located in FEMA Zone A. A floodplain permit will not be required for bridge construction.

Analysis shows that over 25% of the total design flow will be present in the east overbank. Wing dikes will be required on the upstream side of the bridge.
D. Traffic Estimates

Year 2017 annual average daily traffic (AADT) volumes were 2,790 vehicles per day (VPD), with trucks comprising approximately 18% of total traffic. Historic AADT volumes between 1993 and 2017 have varied between 2,530 VPD and 3,420 VPD.

Iowa DOT Office of Systems Planning forecasts an AADT volume of 3,480 VPD in Year 2023 and 3,960 VPD in Year 2043, with 14\% truck percentage for both years. Year 2043 design hour forecast volumes are 400 vehicles per hour (60% eastbound) for the AM peak hour, and 400 vehicles per hour (65% westbound) for PM peak hour.

E. Crash History

No crashes were reported on Iowa 9 at the bridge location in the past 10 years. Two single vehicle crashes were reported within 500' - 1,000 feet east and west of the bridge, each with one minor injury and one major injury. The bridge is in a sag vertical curve and has adequate sight distance available.

F. Sufficiency Ratings

The official federal bridge sufficiency rating is 53.9 and the unofficial federal bridge sufficiency rating is 54.3. A drop in any of the aforementioned bridge condition ratings is expected to drop the sufficiency rating below 50 . In the past, there was an instruction to those determining appropriate rehabilitation or replacement strategies for bridges eligible for federal funding that both rehabilitation and replacement options should be evaluated when the sufficiency rating was between 50 and 80 . With a sufficiency rating below 50 and the ' 5 " condition ratings of the deck, superstructure and substructure, replacement is the clear choice.

G. Accelerated Bridge Construction Score

The Accelerated Bridge Construction (ABC) normalized score using state roads is 52, which would qualify the project for further evaluation of ABC techniques. The largest contributing factor to the raw score is the out of distance travel (OODT) of 29 miles, which contributes 50 to the total. The daily road user costs (DRUC) raw score is elevated to a score of 20 because the OODT is included in the calculation. The

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 4
remainder of the score is due to an average annual daily traffic (AADT) raw score of 10 and an economy of scale (EOS) raw score of 5 .

The ABC normalized score using county roads is 33, which indicates that further evaluation of ABC techniques for this project is not necessary. The individual raw scores for AADT, OODT, DRUC, and EOS were 10, 20, 20, and 5, respectively.

H. Access Control

Access rights will not be acquired on this project.

II. PROJECT CONCEPT

A. Proposed Improvements

Because of the roadway and bridge overtopping found during the bridge hydraulics analyses and the challenge in identifying cost-effective solutions mitigating the overtopping, two options were explored for replacement of the existing bridge.

1. Alternative Number 1: 3-Span Continuous Concrete Slab Bridge on Existing Vertical Alignment

Replace the existing 75' x 28 ' continuous concrete slab bridge with a $100^{\prime} \mathrm{x} 44^{\prime}$ continuous concrete slab bridge at the same roadway profile as the existing. Traffic will be detoured off-project to allow the removal of the existing bridge and the construction of the replacement bridge in one stage.

The proposed bridge will not be skewed and will be centered on the channel, similar to the existing bridge. 3 ' -0 wide berms and 2.5:1 ($\mathrm{H}: \mathrm{V}$) slopes to the existing ground line in front of each abutment are proposed. Flow velocities through the bridge opening are relatively slow but Class E Revetment is proposed as protection for the abutment slopes. Each abutment will be founded on steel H-piles. Diaphragm piers with monolithic caps and spread footings keyed 18" into hard shale are proposed as well.

The maximum Q100 backwater is 0.20 feet. The roadway will be overtopped and the bridge structurally designed for loads associated with inundation.

Estimated Construction Cost

Bridge Item
New Bridge - CCS Bridge
$\frac{\text { Estimated Cost }}{\$ 433,800}$

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 5

Remove Existing Bridge	$\$ 26,000$	
Revetment, Class E	$\$ 10,000$	
Upstream Wing Dikes	$\$ 20,000$	
Staging @ 0\%	$\$$	0
Aesthetics @ 0\%	$\$$	0
Mobilization @ 10\%	$\$ 47,000$	
Contingency @ 20\%	$\underline{\$ 103,400}$	
Bridge Total	$\$ \mathbf{6 4 0 , 2 0 0}$	

Roadway Item	Estimated Cost
Removal of Pavement	$\$ 6,700$
PCC Bridge Approach Pavement	$\$ 94,960$
9" HMA Shoulder	$\$ 35,364$
Guard Rail Items	$\$ 21,074$
Bridge End Drains	$\$ 16,000$
Traffic Control (5\%)	$\$ 8,705$
Mobilization (5\%)	$\$ 8,705$
Contingency (30\%)	$\$ 57, \mathbf{4 5 2}$
Roadway Total	$\mathbf{\$ 2 4 8 , 9 6 0}$

Project Total: \$889,160

Costs above assume that Iowa 9 will be closed to traffic during construction. As an alternative, it is possible to stage construct the new bridge while maintaining one lane of traffic on the existing bridge. Temporary barrier rail can be placed such that 14.5 feet of deck is available between the TBR and the bridge rail. This will allow enough of the new bridge to be constructed that 14.5 feet of deck will be available in the second phase of construction.

Staged construction will also increase the overall duration of construction. It's estimated that the additional time will add around 2 weeks to the project schedule. Although it is not anticipated that the bridge construction will take the entire construction season, adding time to the contract duration will likely increase mobilization costs and may reduce the flexibility the contractor has in scheduling the improvements. This would have the effect of increasing the overall project cost. This increase is reflected in the estimate below, and amounts to 10% of the bridge cost.

Additional costs for staged construction are as follows:

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 6

Item	Estimated Cost
Pavement Markings Removed	$\$ 277$
Temporary Barrier Rail, Concrete	$\$ 11,625$
Temporary Traffic Signals	$\$ 9,000$
Temporary Crash Cushions	$\$ 5,000$
Additional Structural Cost	$\$ 43,380$
Traffic Control (5\%)	$\$ 3,464$
Mobilization (5\%)	$\$ 3,464$
Contingency (30\%)	$\underline{\$ 20,784}$
Total	$\$ 96,994$

2. Alternative Number 2: 3-Span Continuous Concrete Slab Bridge with a 5.3’ Profile Grade Raise at the Bridge

Replace the existing 75’ x 28’ continuous concrete slab bridge with a 100’ x 44’ continuous concrete slab bridge with a profile grade elevation 5.3 feet higher than existing. Traffic will be detoured off-site to allow the removal of the existing bridge and the construction of the replacement bridge in one stage.

The proposed bridge will not be skewed and will be centered on the channel just as the existing bridge is. 3 ' -0 wide berms and 2.5:1 ($\mathrm{H}: \mathrm{V}$) abutment slopes are proposed. Flow velocities through the bridge opening are relatively slow but Class E Revetment is proposed as protection for the abutment slopes. Each abutment will be founded on steel H-piles. Diaphragm piers with monolithic caps and spread footings keyed 18 " into hard shale are proposed as well.

The maximum Q100 backwater is 1.18 feet. The roadway approaches will be overtopped but the bridge will not.

Costs for staged construction were not evaluated on this alternate.

Estimated Construction Cost

Bridge Item	Estimated Cost
New Bridge - CCS Bridge	$\$ 458,000$
Remove Existing Bridge	$\$ 26,000$
Revetment, Class E	$\$ 10,000$
Upstream Wing Dikes	$\$ 20,000$
Staging @ 0\%	$\$$
Aesthetics @ 0\%	$\$ 40$
Mobilization @ 10\%	$\$ 49,400$

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 7

Contingency @ 20\%	
Bridge Total	$\underline{\$ 108,700}$ $\mathbf{6 7 2 , 1 0 0}$
Roadway Item	$\underline{\text { Estimated Cost }}$
Removal of Pavement	$\$ 41,544$
10" PCC Pavement	$\$ 152,928$
PCC Bridge Approach Pavement	$\$ 94,960$
9" HMA Shoulder	$\$ 35,364$
6" HMA Shoulder	$\$ 22,500$
Granular Shoulders	$\$ 7,443$
Guard Rail Items	$\$ 21,074$
Embankment-in-place	$\$ 216,000$
Bridge End Drains	$\$ 16,000$
Traffic Control (5\%)	$\$ 30,391$
Mobilization (5\%)	$\$ 30,391$
Contingency (30\%)	$\underline{\$ 200,577}$
Roadway Total	$\$ 869,172$

Project Total: \$1,541,272

B. Recommendations

Alternative Number 1 is our recommended bridge solution because of its cost effectiveness and how it compares to the existing structure. Alternative Number 2 is not recommended because even with a significant grade raise to the bridge, the backwater is significantly increased and the roadway approaches would be overtopped as well. During a flood event, the bridge will still need be closed and traffic will be re-rerouted onto county roads.

The roadway will be reconstructed with this project through the end of the proposed bridge approach section. Shoulder reconstruction will need to be extended past the end of the bridge approach to accommodate new guardrail installation. The proposed roadway profile generally follows the existing profile.

We recommend closure of the roadway during construction to facilitate faster construction and due to the overall lower construction costs associated with this option.

C. Detour Analysis

Iowa 9 will be closed to traffic during construction. The proposed detour route will follow V46 (Robin Avenue) south to A46 ($150^{\text {th }}$ Street), then east to V58 (Willow Avenue), then north to Iowa 9 in Cresco (see detour sheet in Appendix B). Because this

Howard County
Proj. \# BRFN-009-7(38)--39-45
PIN: 18-45-009-010
Page 8
detour route utilizes county roads, an agreement will need to be made with Howard County for its use.
D. Special Considerations

No existing entrances will be impacted by construction if Alternate 1 is chosen. Alternate 2 impacts 3 entrances.

There are no pedestrian accommodations within the project limits.
An existing fiber optic line has been exposed in the stream channel. It is proposed that rip rap be added to the channel in the vicinity of the bridge to avoid additional future erosion.

E. Construction Sequence

It is anticipated that all work will be awarded to one prime contractor. The Bridges and Structures Bureau will coordinate the plan preparation with Snyder \& Associates, Inc. / Shuck-Britson, Inc.
F. Program Status

This project is listed in the 2020-2024 Iowa Transportation Improvement Program with $\$ 805,000$ programmed for construction in FY 2023. The project is currently scheduled for a November 15, 2022 letting.

General Information
Measurement units for this survey are US survey feet. This survey is for proposed replacement of the lowa Hwy. 9 bridge over the North Branch of the Turkey River. Project datum and control information is provided by Design
Survey Office. This project is a Partial DTM with Photo control. This survey request was for the lowa Hwy. 9 corridor only.

Vertical Control
Vertical datum for this survey is NAVD88 (Computed using Geoid12b). GRS80 Ellipsoidal Height was computed at project Pts. 2000-411, CRESCO, OREGON,$~$
CP1, CP2 \& CP3 by conducting one concurrent $51 /$-hour static Additional benchmarks were placed throughout the project using a GNS Base-Rover setup relative to Pt. CP1 and Pt. CP2. Two observations with minimum of 4 -hours between were collected and used in a weighted average

This survey observed 1 NGS Control Monument with published NAVD88 height to
compare to local ground control:
NGS 2nd. order class 0 mark designated CRESCO has a published Elev. Of 1297.75
Survey Elev. $=1297.79$
This survey observed 1 local area county Control Monument with published Her

Howard County Control mark designated 2000-411 has a published Elev. of 1266.13 Survey Elev. = 1266.26

This sur
control:
BM 24B As-built Plans Project No. FN-9-7(6)-21-45 Culverts Elev. 1209.35
BM 502 Survey Elev. $=1209.38$
BM
elevations.
Bridge seat elevation from As-built Plans FN-31 Design No. $158=1198.71$
The vertical differe ele is 101 to
This survey established two additional local bench marks:
BM 500 Survey Elev. $=1199.62$
BM 501 Survey Elev. $=1201.8$

Horizontal Control
The project coordinate system for this survey is lowa RCS Zone 2 (U.S. Survey Feet). This survey control is relative to laRTN reference stations. laRTN Reference Station coordinates are relative to the National Reference Station
network datum: NAD83 (2011) for Epoch 2010.00. Coordinates were determined by conducting one concurrent $5 / 1 /$-hour static session. Additional control points were placed throughout the project using a GNSS Base-Rover setup relative to Pt. CP1 and Pt. CP2. Two observations with a minimum of 4 -hours between were collected and used in a weighted average.

Alignment Information
The horizontal alignment for this survey is a retrace of As-built Plans
Project No. FN-9-7(6)-21-45 Grade and Pave. Survey stationing was equated to
the plan Pl at $\mathrm{Sta} .928+85.20$ and run back and ahead without equation
throughout the survey
Survey stationing relates to as built plan stationing as follows:
PI Sta. 955+52.00 As-built Plans Project No. FN-9-7(6)-21-45
Survey PI Sta. $955+51.58$
PI Sta. $928+85.20$ As-built Plans Project No. FN-9-7(6)-21-4
Survey PI Sta $928+85.20$
PI Sta. $902+19.46$ As-built Plans Project No. $\mathrm{FN}-9-7(6)-21-45$
Survey PI Sta. $902+19.91$

CONTROL POINT VICINITY MAP

This map is a guide to the vicinity of the primary project control points Primary control is for use with RTK base stations and for RTN validation.
Future surveys will use primary project control to establish temporary
control as needed for construction or other surveying applications.

HORIZ. DATUM: NAD83(2011) EPOCH 2010.00
VERT. DATUM: NAVD88
la. Regional Coordinate System Zone 2
Coordinate listing from next sheet will be used with laRTN for monument recovery. No other reference ties are given.

HORIZONTAL AND VERTICAL PROJECT CONTROL COORDINATE LISTING

HORIZ. DATUM: NAD83(2011) EPOCH 2010.00
VERT. DATUM: NAVD88
la. Regional Coordinate System Zone 2

Point Name Northing Easting Elevation Feature Code-Monument Description

CP1	9875036.34	12641177.06	1224.47	BM DRILL HOLE IN FLANGE ROW RAIL... 140 FT NORTH AND 64 FT WEST OF INTSEC HWY 9 AND ROBIN AVE
CP2	9874840.76	12642934.97	1198.92	BM SET FENO MON 0.32 MI EAST OF INTSEC HWY 9 AND ROBIN AVE... 76 FT SOUTH OF CTR HWY 9 AND 50 FT EAST OF CTR PARK ENT.
CP3	9874843.14	12646491.85	1205.91	BM FD Conc Mon with \#4 RBR CTR... 108 FT SOUTH AND 80 FT WEST OF INTSEC HWY 9 AND SAINT AVE

