

Iowa Department of Transportation Highway Division

PLANS OF PROPOSED IMPROVEMENT ON THE

PRIMARY ROAD SYSTEM

GRADE AND PAVE

FROM 4.8 KM W. OF LEGRAND TO MARSHALL AND TAMA CO. LINE

SCALES: As Noted

The Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction, series of 2001, plus current supplemental specifications and special provisions shall apply to construction work on this project.

Value Engineering Saves. Refer to Standard Notation 203-4 on Sheet <u>C.O</u>4

-83N

STA. 1119+00 WB STA. 92+50 END PROJECT M.P. 192.56

105-4

09-27-94

DATE

4/28/1998

4/28/1998 1G/27/1998

10/27/199

6/6/1995

4/30/1996 4/30/1996 10/28/199

4/25/2000

4/25/200

	PROJECT LENGTH SUMMARY		105-1 09-27-94
DIV.	LOCATION	m	km
1	Sta 4121+28.22 to Sta 4126+00 Sta 26+00 R1 to Sta 47+94.217 R1 Sta EQ. 47+94.217BK=45+53.693AH Sta 45+53.693 R2 to 90+00 R2 Total Length of Project	471.8 2,194.2 0.0 4,446.3 7,112.3	0.47 2.19 0.0 4.45 7.11

415 PROJECT NUMBER NHSX-30-5(166)--3H-64 R.O.W. PROJECT NUMBER NHS-30-5(137)--19-64 PROJECT IDENTIFICATION NUMBER 92-64020-1

INDEX OF SHEETS

105-3 09-27-94

NO.	DESCRIPTION
A.01 A.02 A.03 B.01-B.09 C.01-C.12 D.01-D.12 E.01-E.14 F.01-F.07 G.01-G.06 J.01-J.05 K.01-K.10 L.01-L.07 M.01-M.04 M.05 G.01-G.26 R.01-R.03 T.01-T.08 U.01-U.06 V.01-V.07 V.08-V.09 W.01-W152 X.01-X.47 Y.01-Z.27	Estimate of Quantities and General Information Mainline Plan & Profile Sheets Sideroad Plan & Profile Sheets Detour Plan & Profile Sheets Benchmark & Reference Information Final Pavement Markings Interchange Geometric Staking, Jointing & Edge Profiles Intersection Geometric Staking, Jointing & Edge Profiles Bid Quantity & Design Sheet for Sanitary Sewer Storm Sewer Sheets Soils Sheets Wetland Mitigation Sheets Tabulation of Earthwork Quantities 500 Series, Modified Standards and Special Details Bridge and RCB Situation Plans

02-11-00 DESIGN DATA RURAL <u>9560</u> V.P.D. 2001 AADT 12,850 V.P.D. 2021 AADT 2021 DHV __1380 V.P.H. TRUCKS Total Design ESALs 9,920,190

I hereby certify that this plan was prepared by me or under

	INDEX OF SE	EALS
SHEET NO.	NAME	
A.O1	John R. Abrams	Prima
C.09	David R. Claman	Hyd. S
C.11	Robert L. Stanley	Geote
M.01	H. Robert Veenstra Jr.	Sanitary
V.08	Gordon Port	R.C.

07229

my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa. John R. Abrams Printed or Typed Name

REVISIONS

My license renewal date is December 31, 20 02 Pages or sheets covered by this seal: AO1-AO3, BO1-BO9, CO1-CO8, DO1-D12

E01-E14, F01-F07, G01-G06, J01-J05, K01-K10, L01-L07, M05, R01-R03, T01-T08

UO1-UO6, VO1-VO7, WO1-W152, XO1-X47, YO1-Y47, ZO1-Z27

STA. 4121+28 EB BEGIN PROJECT	Equation Sta 47+94.217 BK =	
	Sta 47+94.217 BK = Sta 45+53.693 AH 33 34 35 36 37 38 38 38 38 39 30 30 30 31 31 32 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	PACIFIC RAILROAD (S) PIPELINE CO. NATURAL
NES 14 13 L E	9 10 QURRY 9 10 LE GRAND 15 QRAND 21 22 (146) 23 23	WINON ACIFIC RAILROAD ACIFIC RAILROAD ACIFIC RAILROAD ACIFIC RAILROAD ACIFIC RAILROAD ACIFIC RAILROAD ACIFIC RAILROAD

R-17W

DESIGN TEAM ABRAMS/SMITH

THE BUTTER

.v: Projects 84080030492 Design 884030188.a01

IOWA DOT * OFFICE OF DESIGN

MARSHALL

NHSX-30-5(166)--3H-64

TYPE

Primary Signature Block

Geotech. Signature Block

Sanitary Sewer Signature Block

R.C.B. Signature Block

Hyd. Signature Block

SHEET NUMBER

A.01

STANDARD SYMBOLS

(·)	Interstate Highway Symbol	\forall	Fire Hydrant	P	Guardrail (Beam or Cable)
$\widetilde{\cdots}$	U.S. Highway Symbol	• WH	Water Hydrant (Rural)	■ GP	Guard Post (one or two)
$\overbrace{\cdot}$	Iowa Highway Symbol	(ŚŤ)	Septic Tank		Guard Post (over two)
	County Road Highway Symbol	(Ĉ)	Cistern	⊙ FP	Filler Pipe
*	Evergreen Tree	(LP)	L.P. Gas Tank (No Footing)	⊙ GV	Gas Valve
\bigcirc	Deciduous Tree	(UST)	Underground Storage Tank	⊙ WV	Water Valve
(E)	Fruit Tree	\sim	Latrine	⊙ SL	Speed Limit Sign
(SB)	Shrub (Bushes)		Luminaire	MM	Mile Marker Post
~~~	Timber	*	Traffic Signal	□ SIGN	
mm	Hedge	*	Traffic Signal with Luminaire	⊙ WHU	Water Hook Up
A	Stump	O TP	Telephone Pedestal	□ RT	Radio Tower
714	Swamp	O TVP	Television Pedestal	⊙ TA	Tower Anchor
	Rock Outcrop	•	Telephone Pole	□ EB	Electric Box
000	Broken Concrete	<del>-</del>	Telephone Pole (Second Company)	□ тсв	Traffic Signal Control Box
$ \begin{smallmatrix} \Delta & \Delta & \Delta & \Delta \\ \nabla & \nabla & \nabla & \nabla \end{smallmatrix} $	Revetment (Rip Rap)	-	Telephone Pole (Third Company)	□ RRB	Rail Road Signal Control Box
[+]	Cemetery	<del></del>	Telephone Pole (Fourth Company)	□ TSB	Telephone Switch Box
<u></u> ¦ <u>_</u> G_]	Grave	-	Telephone Pole (Fifth Company)		·
(CV)	Cave	<b>=⊕</b> =	Power Pole		
(SH)	Sink Hole	<del></del>	Power Pole (Second Company)		
	Board Fence	<b>=</b>	Power Pole (Third Company)		
##	Chain Link Fence	<del></del>	Power Pole (Fourth Company)		
X	Barbwire Fence	-	Power Pole (Fifth Company)		
× #	Security Fence		Electrical Highline Tower (Metal or Concrete)		
	Woven Fence	•	Telephone Riser Pole		
×	Barbwire and Woven Fence		Power Riser Pole		
444	Terrace		Telegraph Pole		
****	Earth Dam or Dike (Existing)		Satellite TV Dish		•
+++++	Earth Dam or Dike (Proposed)	W	Existing Water Line		
	Tile Outlet	WW	Existing Water Line (Second Company)		
	Edge of Water	— - San.— -	Existing Sanitary Sewer Line		
>	Existing Drainage	T	Existing Telephone Line		
<b>-</b>	Proposed Drainage	TT	Existing Telephone Line (Second Company)		
	Right of Way Rail or Lot Corner	F0-1	Existing Fiber Optics Telephone Line		
	Concrete Monument	— -St.S.— -	Existing Storm Sewer Line		
X	Well	— — G— —	Existing Gas Line		
	Windmill	G-HP	Existing High Pressure Gas Line		
$\otimes$	Beehive Intake	— — GG— —	Existing Gas Line (Second Company)		
	Existing Intake	· GG-HP	Existing High Pressure Gas Line (Second Company)		•
	Proposed Intake		Existing Power Line		
•	Existing Utility Access (Manhole)		Existing Power Line (Second Company)		
	Proposed Utility Access (Manhole)	TV	Cable Television Line		

osmith2 : Projects 846309099492 Design k64030166.a03

# UTILITY LEGEND

GTE Eleventh Avenue Grinell, IA 50112-0330

Central Iowa Water 2051South 24th Ave. West Newton, IA 50208-8928

McLead USA Telecom. Services 3600 109th Street Urbandale, IA 50322

IES Utilities 1284 XE Pl. Boone, IA 50036

US West Communications 2103 E. University Des Moines, IA 50317-5252

MWR

3rd Ave. SE

Town Center Suite 500

Cedar Rapids, IA 52401

Marshall County
Rural Electric Coop
2908 South Central Street
Marshalltown, IA 50158

# RIGHT OF WAY LEGEND

A Proposed Right of Way

 $\triangle$  Existing Right of Way

Existing and Proposed Right of Way

Easement and Existing Right of Way

Borrow

Easement (Temporary)

Easement

Excess

Property Line

A/C Access Control

# CONVENTIONAL SIGNS



# Legend And Symbol Information Sheet

(Symbols are Typical Only, actual size may vary)







TYPE 'A' OR 'B' GRANULAR SHOULDER Adjacent to PCC Pavement

Earth Shoulder fill requires approximately (X) cubic meters of excavation, including 40% for shrinkage, per station. See Standard Road Plan RH-37D

for construction requirements.

8 SER 2001 14:52

SIDE X LOCATION ROAD IDENTIFICATION STATION TO STATION Rt Lt Out 150 150 150 U.S. 30 Detour EB 4121+28.22 4124+60 U.S. 30 Detour EB 4123+00 24+60 4124+60 47+30 150 Jun 92.7 150 In 92.7 150 Rt 14.32 150 Lt 14.32 150 Lt&Rt 135.9 150 Rt 14.32 150 Lt 14.32 150 Jun 124.4 U.S. 30 EB
U.S. 30 Detour EB 24+60 47+30 2047+30 2052+99.55 U.S. 30 Detour EB Co. Rd. T-31 2047+30 1034+40 2051+60 1036+99.006 U.S. 30 Detour EB 2083+81.05 2088+74.91 U.S. 30 Detour EB 2085+50.00 88+74.91 2088+74.91 92+50 150 In 92.7 150 Lt 94.3 92+50 U.S. 30 El Co. Rd. T-37/IA146 88+74.91 1477+15.85 1464+00.00 Co. Rd. T-37/IA146 1.8 150 Rt 94.3 1477+15.85













Notes:

Subbase may be constructed to a width greater than that indicated.

Any such extra width of subbase shall be considered incidental to other work and not be measured for payment.

Section view is in direction of traffic.

Normal section shown may be appropriately modified for areas specifically designated by the Engineer, such as intersections or superelevated curves.

- Refer to other drawing for details of shoulder design and construction.
- Refer to Standard Road Plan RF-19C for details of subdrain installation.

# (FUTURE PAVING)

Modified

Dimensions in mm unless noted.

2512A

Modified

Dimensions in mm unless noted.

2503

LOCATION					DIMEN	SIONS		
INTERCHANGE	RAMP	STATION TO	STATION	T	( <u></u> ) =	(LL) E	(⊃) ∈	SHOULDER TYPE
IA 146	A,B		THE REPORT OF THE PROPERTY OF	260	4.8	1.2	1.8	Granular
IA 146	C,D			260	4.8	1.2	1.8	Granular
					:			
	·							
					· · · · · · · · · · · · · · · · · · ·			
							Andrew Market WAR	
				L				



RAMP GRADING

(FUTURE)
TYPICAL CROSS SECTION
PCC RAMP PAVING

	LOCAT	TION	DIMENSIONS					
INTERCHANGE	RAMP	STATION TO STATION	∃ (≯)	⊜ ∈	(C) E	₹ 🛇	FS	BWB m
IA 146	A , B		4.90	9.18	4.8	410	3	6.12
IA 146	C,D		4.90	9.18	4.8	410	3	6.12
					•			
							*****	

DESIGN TEAM ABRAMS/SMITH

bsmith2 : Browerts 640Au089439 Decom k64089166.b01

19 - (F-2001 14:52

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL COUNTY

PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

**B.03** 







www.Projects 816300304821Destan k84090166.b91

08-SEF-2001 14:52



LOCATION			E	GRANULAR SHOULDER,	$\otimes$	The price bid for "Detour Pavement" in square meters will be considered
STATION TO STATION		Meters	Meters	TYPE "A"  ① Mg ②	① _{m³} ②	full compensation for building the
4121+28.22	4122+12.54	1.8	0.6	38.94	14.32	Earth Shoulder Fill requires approxi- mately (X) cubic meters of excava-
4122+12.54 4122+93.92	4122+93.92 4124+60.00	1.8-8.4	0.6	38.94 38.94	14.32 14.32	tion; including 40% for shrinkage.
2047+30.00	2051+59.676	8.4	0.6	38.94	14.32	<ol> <li>Per shoulder per station.</li> <li>See Typ. 7110 for additional info.</li> </ol>
2051+59.676 2083+81.05	2052+99.55 2085+53.338	8.4-0.6 0.6-8.4		38.94 38.94	14.32	
2085+53.338 1461+89.000	2088+74.91 1462+40.000	8.4 6.3	0.6	38.94 38.94	14.32 14.32	(2) Quantities Calculated Assuming Asphalt Pavement
1401103.000	1402*40.000	0.3	0.0	30.74	14.32	

ABRAMS/SMITH MARSHALL NHSX-30-5(166)--3H-64 **B.04** COUNTY PROJECT NUMBER SHEET NUMBER DESIGN TEAM **METRIC** IOWA DOT * OFFICE OF DESIGN

Concrete Pavement. Transverse joints, center tie bars

and sealing of the center longitudinal joint are not required.

The Asphalt Cement Concrete option shall be constructed in conformance with current specifications for Type "B" Asphalt Cement Concrete Base ( Class 1 ), an approved

commercial mix or a mix of higher quality.







DETAILS OF ROCK REVETMENT FLUME









DESIGN TEAM ABRAMS/SMITH

NETRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL COUNTY

PROJECT NUMBER NHSX-30-5(166)--3H-64

SHEET NUMBER B.07





for Two-Way Left Turn Lane

D Symbol (when specifically listed in Tabulation 108-29); for size and shape, refer to Typical Details 9002 and 9008. (X) Typical spacing (in meters) between sets of arrows should be approximately 3 times the speed limit (MPH) or one set located at mid-block.



(5) NO PASSING ZONE LINE (Yellow) (Y) 1/2 STORAGE LENGTH

(6) BROKEN LANE LINE (White)

(Z) 9.1 m MINIMUM

- bsmith2 - : Project: 84635635490 Design r64630168.b00

-1 400 2001 12:23 -



		ESTIMATED PROJECT QUANTITIES			100-1A
ITEM NO.	ITEM CODE	ITEM	UNIT	TOTAL	07-15-97 AS BUILT QUAN.
1	2101100100	CLEAR+GRUB	UNIT	1232.6	5,035,20
3	2101100200		HA	1.04	1.04
4		CL 10 EXCAVATION RDWY+BORROW CL 10 EXCAVATION UNSUIT/UNSTABLE SOIL	M3	1133054 4383	1,068,330.00
5		CL 12 EXCAVATION RDWY+BORROW	M3	1409	4,738.55
6		CL 12 EXCAVATION BOULDER/ROCK FRAGMENT	M3	400	1,025,928
7		INTERCEPT DITCH+FLUME	M	1120	
8		SELECTED BACKFILL MAT'L	M3	75074	301.000
9		SPECIAL BACKFILL MAT'L	M3	2213	75,074.00
10		LOCATING TILE LINE	M	14244	2208.792 5847.500
11		TOPSOIL STRIP SALVAGE+SPREAD	M3	102618	125,751.542
12		COMPACTION W/MOISTURE CONTROL  COMPACT BACKFILL ADJ TO BRDG/CULV/STRUCT	M3	207843	149,289.700
14		GRANULAR MAT'L-BLANKET+SUBDRAIN	M3	678 18732	741.00
15		FIELD LABORATORY (QM-E)	EACH	1	0.000
16		OVERHAUL (STATION METER)	ST-M	4798504	4798504,000
17		GRANULAR SUBBASE	M2	44586	44,439.045
18		D MOD IF IED SUBBASE D GRANULAR SHLD TYPE A	M3 MG	4441	4441.000
20		EARTH SHLD FINISH	M	9380 9960	9374.573
21		STD/S-F PCC PAV'T CL C CL 3 260 MM	M2	38042	37,810.428
22	2301600100	PCC PAV'T SAMPLE	LS	1	1.00
23		GRANULAR SURF ON RD CL A CR STONE	MG	1346	23 45.344
24 25		DRIVEWAY SURF CL A CR STONE DETOUR PAV'T	MG M2	9865	699.510
26		RMVL OF EXIST STRUCT	LS	7000	9,944.642
27	2402120000	EXCAVATION CL 20	M3	2245	3428.800
28		CONC 100D RDWY PIPE CULV 600 MM	М	256.19	330.750
30		CONC 100D RDWY PIPE CULV 750 MM	M	21.95	21: 950
31		CONC 100D RDWY PIPE CULV 900 MM CONC 100D RDWY PIPE CULV 1050 MM	M	154.83 108.5	162.770
32		CONC 150D RDWY PIPE CULV 600 MM	M	44.5	111.550
33		CONC 150D RDWY PIPE CULV 1050 MM	М	142	136.640
34		CONC 175D RDWY PIPE CULV 1200 MM	M	114.46	80.460
35 36		CONC ARCH 100D RDWY PIPE CULV 920X570 MM CONC PIPE ELBOW 600 MM	EACH	29.87	39 ,630
37		CONC PIPE APRON 600 MM	EACH	21	2.000
38	2416240750	CONC PIPE APRON 750 MM	EACH	2	2.000
39 40		CONC PIPE APRON 900 MM	EACH	6	6.000
41		CONC PIPE APRON 1050 MM CONC PIPE APRON 1200 MM	EACH	4 4	4.000
42		CONC ARCH APRON 920 X 570 MM	EACH	2	2,000
43		PIPE APRON GUARD (RF-26) 600 MM	EACH	13	13.000
44		PIPE APRON GUARD (RF-26) 750 MM PIPE APRON GUARD (RF-26) 900 MM	EACH	1	1.000
46		PIPE APRON GUARD 920 X 570 MM	EACH	2	4.000
47		CMP RDWY CULV 600 MM	M	114.16	123.91
48		CMP ELBOW 600 MM	EACH	8	6.00
49 50		JACKED 100D CONC RDWY PIPE CULV 600 MM  JACKED 150D CONC RDWY PIPE CULV 1200 MM	M	23.17	0.000
51		UNCL ENT PIPE CULV 450 MM	M	117.7	34.000 130.640
52		UNCL RDWY PIPE CULV 600 MM	M	37.2	13,43
53		UNCL RDWY PIPE CULV 750 MM	M	43.27	63.38
54 55		UNCL APRON 450 MM UNCL APRON 600 MM	EACH	18	22.000
56		UNCL APRON 750 MM	EACH	6	7.000
57		STD SUBDRAIN CMP 250 MM	M	345	1126.310
58	2502110300	STD SUBDRAIN CMP 300 MM	M	135	276.060
59		LONGITUDINAL SUBDRAIN (SHLD) 100 MM	M	4531	4627.100
60		SUBDRAIN OUTLET RF-19E CONC 100D STORM SWR 375 MM	EACH M	66	66.000
62		CONC 100D STORM SWR 450 MM	M	128.6	14.600
63	2503400680	INTAKE RA-68	EACH	3	3.000
64		REVETMENT CL E	MG	280	790.403
65		DEROSION STONE	MG	50	294.046
66		DENGINEERING FABRIC DENVL OF PAV'T	M2 M2	9888	9.888.00
68		PCC DRIVEWAY 200 MM	M2	30	139 .750
69	2518000100	SAFETY CLOSURE	EACH	36	29.000
70		PERMANENT RD CLOSURE (RURAL) RE-3A	M	10	9.200
71		PERMANENT RD CLOSURE (URBAN) RE-3B	EACH	500	1.000
72		SAFETY FENCE CONSTRUCTION SURVEY	LS	1	412.000
74		PAINTED PAV'T MARK, WATERBORNE	М	7043	9001.300
75	2527104010	PAINTED SYMBOL+LEGEND, WATERBORNE	EACH	4	3.000
	0500 101000	I TO ACE TO CONTROL	LS	1	/ 0.6
76 77	2528101000 2528107000		DAY	5	66.000

		ESTIMATE	n ppn	IECT OU	ANTITIES			100-1A
		LOTIMATE	D T NO	occi do	MAITITES			07-15-97
ITEM NO	. ITEM CODE		I	TEM		UNIT	TOTAL	AS BUILT QUAN.
	78 2533100000	MOB IL IZATION				LS	1	1.00
	79 2538102000 30 2599999915					EACH EACH	2	2.00
		MONITORING WELL				UNIT	2	2.00
	32 2601102050	NATIVE GRASS+FORB SEEDING				HA	1.415	3 .990
	33 2601103000	STABILIZE CROP SEED+FERTIL	IZE			HA	98	57.701
	34 2601104200	MULCH				HA	33	./3.897
		SLOPE PROTECTION WOOD EXCEL	MAT RC-1	14		M2	2000	
		WATER-SOD/SPEC DITCH CNTL/S				KL	40	1098.80
	37 2602000020	SILT FENCE				M	7756	3,508.60
		SILT FENCE-DITCH CHECKS				M	1648	1139.90
	39 2602000050 90 2602000090	CLEAN-OUT OF SILT FENCE				EACH	123	41.00
		CLEAN-OUT OF SILT FENCE-DIT	TCH CHECK			M	12410 2637	57.00
		TREE, FURNISH AND INSTALL	OIT OILLON			EACH	13.0	286.40
	,	TOPSOIL STRIP SALVAGE	& SPRE	AD		M 3		262.500
		DUCTILE IRON SAN SWR				M		92.725
		PLASTIC SAN SWR 375 N				M		193.697
		SAN SWR UTILITY ACCES CONSTRUCTION SURVEY	S (PREC	AST) (RA-51	1	EA		4.000
	98 2533-100000					LS		0,000
		SEED & FERTILIZE (RUR	AL)		A A A A A A A A A A A A A A A A A A A	НА		0,000
10	2601-104200	MULCH				НА		0.000
10	2401-100000	RMVL OF EXIST STRUCT			420	LS		1.000
		STRUCT CONC (RCB)	,			M3 M3		435.040
		REINF STEEL				KG ,		0.000
	5 2533 -100000					LS		1.000
		EVERA WORK OPPERS						
		EXTRA WORK ORDERS						
NC 405		ITEM	UNIT	QUANTITY				
105		entive Proposal	LS EA	1				
106	5 Precast Box Culvert		LS	1 -				
107 107			EA M	1 _ 3.66				
108	_		EA	1				
108			KL	853.09 342.8				
109		uitable Class 10	M3	3020.64				
110		Apron = To 1000 mm 600mm Dia.</td <td>EA</td> <td>1 -</td> <td></td> <td></td> <td></td> <td></td>	EA	1 -				
	5 RMV + Reinstail Conc 0 "C-2" Collar	Apron = To 1000 mm 450mm Dia.</td <td>EA EA</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	EA EA	1				
	5 Pav't Marking Remova	al	M	288				
	0 Haul Special Backfill 5 HMA for T-31		LS LS	1				
113	0 Mill & Resurface la. 14	16	LS	1				
	<ul><li>ACC Removal</li><li>Extra Dirt for Ponding</li></ul>	& Shoulder	LS	1 -				
	0 HMA Driveway	a Siloulder	LS	1				
115	•		EA	62,138.29				
116 116		ubbase NY + Barrow- Additional	MG M3	464.96 4864.25				
117	0 Conc 100D RDWY Pip		M	32				
117 118			LS LS	1				
118	5 STD Subdrain Plastic	Pipe 150mm	M	706.04				
119 119		•	M	7.6 111.88		310		
120	0 Hickenbottom Intake		EA	1				
120 121			MG	426.2		<i></i>		4:00
121	5 Haul Road Crossing		LS LS	1	See Sheet C.02 & C.03	tor estimate re	rerence informa	tion
122		-	EA	1 45 700	For Additional Bid Quan	tities and Refe	rence Notes:	
122 123		CC Pav't Smoothness e-Bump & Dip PCC Smoothness Disinc.	EA EA	<b>15,700</b> -1,600				
123	5 Seed & Fertilize (Urba	n)	HA	0.441	See Sheet M.02 for San	itary Sewer at	Sta. 83 + -	
124 124		ng .	HA HA	6.618 8.716	Sanitary Sewer Items ar	e Paid for by t	he City of LeGra	and
125	0 Mobilization for Extra	Seeding, Mowing	LS	1				
125 126		om CMP	LS LS	1	See Sheet V.08 for RCE	3 on IA. 146		
			M	14.02				
126 127		ripe	M3	9.94				
127		on	M3	12,802				
128 128			LS LS	1				
129	O Additional Construction	on Survey	LS	1				
129 130		ulch	LS UNIT	. <b>1</b> -1,660.69				
130	- Academon in File- Mi		JATT	1,000.00				
			/	1 1/2 /				
		ξ _α						

# ESTIMATE REFERENCE INFORMATION

Data li	sted below is for infor	mational purpose only and shall not constitute a basis for any extra work orders.
ITEM NO.	ITEM CODE	DESCRIPTION
1	2101100100	CLEAR+GRUB
2	2101100200	CLEAR+GRUB See Plan & Profile sheets for shaded areas

ITEM NO.	ITEM CODE	DESCRIPTION
1	2101100100	CLEAR+GRUB
2	2101100200	CLEAR+GRUB See Plan & Profile sheets for shaded areas.
2	2102 100100	01 10 500 11 500 1

2102100100	CL 10 EXCAVATION RDWY+BORROW
	Includes 1,124,806 cu. m. suitable material to be
	jused in the roadway fill.
	Also incudes 600 m3 for tie-in grading from sta
	88+74 to 92+20. 7,648 cm for earth shoulder fill
	available from the borrows. No overhaul allowed
	for the shoulder fill and tioning

	 for the shoulder fill and tie-in.
4	CL 10 EXCAVATION UNSUIT/UNSTABLE SOIL Includes 4,183 cu. m. for excavaiton at the wetland mitigation site. An additional 200 cu. M. is for repair of the existing berm at the mititgation site.

5	2102120100	CL 12 EXCAVATION RDWY+BORROW
6	2102120400	CL 12 EXCAVATION BOULDER/ROCK FRAGMENT For boulders encountered in excavation. Existing

		rip rap is not included.
7		INTERCEPT DITCH+FLUME See Tab 100-16 for location and details. Includes 100m for use at the engineer's direction
8	2102220100	SELECTED BACKFILL MAT'L

See Tab 103-3 for location and details.

		and details.			
9	2102230200	SPECIAL BACKFILL MAT'L 225 m3 For tie-in to 30 from sta 88+74 to 92+50 1,773 m3 for detours, and 216 m3 for side roads			
10		LOCATING TILE LINE Estimated at twice the grading project length			

		<u> </u>
11	2105100100	TOPSOIL STRIP SALVAGE+SPREAD
		Includes O cu. m. unsuitable Type B material, O cu. m. unsuitable Type C material and
		52,670 cu. m. Class 10 material to be reserved fo
		topsoiling from roadway cut. Also includes 49,948 cu. m. Class 10 material from Borrows.
		See T sheets for availability and placement
		no topsoil placement past Main Line Sta 70+00

		except on the borrow.
12	2107100200	COMPACTION W/MOISTURE CONTROL See Tab 103-6 for information
13	2107100400	COMPACT PACKETTL ART TO BRECKET WAS TRUET

13	2107100400	COMPACT BACKFILL ADJ TO BRDG/CULV/STRUCT See Tab 104-4 for information.
14	2107100500	GRANULAR MAT'L-BLANKET+SUBDRAIN See Tab 104-5c for information.
ĺ		

		1 See Tab 104-50 for information.
15	2107200400	FIELD LABORATORY (QM-E)
16	2108100000	OVERHAUL (STATION METER) All overhaul computed by mass diagram.
17	2111100000	GRANULAR SUBBASE

 	Includes 22,246 m2 for mainline, 18,665 m2 for the Side roads.
	MODIFIED SUBBASE See Tab 103-3 & Typ. 2512A for locations &

		details.
19	2121100100	GRANULAR SHLD TYPE A

F	STIMATE	REFERENCE INFORMATION	100-4
		REPERENCE INFURMATION	07-15-97
Data	listed below is for info	ormational purpose only and shall not constitute a basis for any e	extra work orders.
ITEM NO.		DESCRIPTION	
		Includes 5,370 Mg for mainline shoulde 2,843 Mg for sideroads, and 1,167 Mg f See Typical 7110 for locations & detai	or detours.
20	2123100100	EARTH SHLD FINISH Includes 5290 M for mainline, 2310 M f Detours, and 3110 M for sideroads. See Typical 7110 for locations & detai	
21	2301103260	STD/S-F PCC PAV'T CL C CL 3 260 MM Includes 20,631 M2 for mainline ,and 1 for sideroads. See Typicals in the B S locations & details.	7,411 M2 heets for
22	2303600100	PCC PAV'T SAMPLE	
23	2312110100	GRANULAR SURF ON RD CL A CR STONE See Typicals 2108 & 2108A for location details. Includes 1,026 Mg for sidero 319 MG for entrances.	s and ads and
24	2315110100	DRIVEWAY SURF CL A CR STONE See Tab 102-3 for locations and detail	s.
25	2399100110	DETOUR PAV'T See Typical 2612 and "F" Sheets for loand details. Includes 9465 sq. m. on 400 sq. m. on Ia 146/T-37.	cations US 30 and
26	2401100000	RMVL OF EXIST STRUCT See Tab 110-2 for details.	
27	2402120000	EXCAVATION CL 20 See Tab 104-3 for details.	
28	2416100600	CONC 100D RDWY PIPE CULV 600 MM See Tab 104-3 and cross sections for 10 and details. Requires RF-14, Type 3 connectors at all joints.	ocations
29	2416100750	CONC 100D RDWY PIPE CULV 750 MM See Tab 104-3 and cross sections for Id and details. Requires RF-14, Type 3 connectors at all Joints.	ocations.
30	2416100900	CONC 100D RDWY PIPE CULV 900 MM See Tab 104-3 and cross sections for 10 and details. Requires RF-14, Type 3 connectors at all joints.	ocations
31	2416101050	CONC 100D RDWY PIPE CULV 1050 MM See Tab 104-3 and cross sections for lo and details. Requires RF-14, Type 3 connectors at all joints.	ocations
32	2416110600	CONC 150D RDWY PIPE CULV 600 MM See Tab 104-3 and cross sections for loand details. Requires RF-14, Type 3 connectors at all joints.	ocations
33	2416111050	CONC 150D RDWY PIPE CULV 1050 MM See Tab 104-3 and cross sections for lo and details. Requires RF-14, Type 3 connectors at all joints.	ocat ions
34	2416121200	CONC 175D RDWY PIPE CULV 1200 MM See Tab 104-3 and cross sections for lo	ocations

# ESTIMATE REFERENCE INFORMATION

2416--200600 CONC PIPE ELBOW 600 MM

2416--240600 | CONC PIPE APRON 600 MM

2416--240750 | CONC PIPE APRON 750 MM

2416--240900 | CONC PIPE APRON 900 MM

2416--241050 | CONC PIPE APRON 1050 MM

land details.

and details.

land details.

and details.

2416--260920 CONC ARCH APRON 920 X 570 MM

and details.

2416--320600 | PIPE APRON GUARD (RF-26) 600 MM

2416--320750 | PIPE APRON GUARD (RF-26) 750 MM

2416--320900 PIPE APRON GUARD (RF-26) 900 MM

2416--340920 | PIPE APRON GUARD 920 X 570 MM

and details.

and details.

and details.

2422--100450 UNCL ENT PIPE CULV 450 MM

2422--200600 UNCL RDWY PIPE CULV 600 MM

and details.

and details.

UNCL APRON 450 MM

UNCL APRON 600 MM

and details.

49 2418--200600 JACKED 100D CONC RDWY PIPE CULV 600 MM

2417--060600 CMP RDWY CULV 600 MM

2417--280600 CMP ELBOW 600 MM

50 2418--401200

2422--200750

2422--300450

2422--300600

See Tab 104-3 for locations.

|See Tab 104-3 for locations.

See Tab 104-3 for locations.

See Tab 104-3 for locations.

CONC PIPE APRON 1200 MM

DESCRIPTION

5 degrees. See Tab 104-3 and cross sections.

|See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

|See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

|See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

|See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

See Tab 104-3 and cross sections for locations

|See Tab 102-3 and cross sections for locations

|See Tab 104-3 and cross sections for locations

JACKED 175D CONC RDWY PIPE CULV 1200 MM

See Tab 102-3 for locations.

UNCL RDWY PIPE CULV 750 MM

_____

ITEM CODE

2416--241200

ESTIMATE REFERENCE INFORMATION	100-4		
LOTIMATE REPERENCE INFURMATION	07-15-97		
Data listed below is for informational purpose only and shall not constitute a basis for any	extra work orders.	1 1	D.

# ESTIMATE REFERENCE INFORMATION 100-4

ITEM		mational purpose only and shall not constitute a basis for any extra work orders.
NO.	TIEM COUE	DESCRIPTION  See Tab 102-1 and Tab 104-3 for locations and
		details. See Tab 104-4 for RCB information and details.
57	2502110250	250 MM STD SUBDRAIN CMP For Proposed locations See Tab 104-5C
58	2502110300	300 MM STD SUBDRAIN CMP For Proposed locations See Tab 104-5C
59	2502250100	LONGITUDINAL SUBDRAIN (SHLD) 100 MM See Tabs 104-5C and 104-9, & cross sections for locations and details.
60	2502300195	SUBDRAIN OUTLET RF-19E See Tabs 104-5C and 104-9, & cross sections for locations and details.
61	2503140375	CONC 100D STORM SWR 375 MM See Tab 104-5B For location and details
62	2503140450	CONC 100D STORM SWR 450 MM See Tab 104-5B For location and details
63	2503400680	INTAKE RA-68 See Tab 104-5A For location and details
64	2507001500	REVETMENT CL E For construction of rock ditches, flumes, checks, or slope protection at various locations as directed by the engineer. Materials shall be a nominal 150mm (-80mm + 100mm) well graded stone as approved by the engineer. All necessary excavation and shaping to make a uniform flowline in the center of the ditch shall be incidental to this work. No additional compensation will be allowed. Refer to details. 230 MG will be used at the wetland mitigation site. 50MG will be used at the engineer's direction.
65	2507002000	EROSION STONE For construction of rock ditches, flumes, checks, or slope protection at various locations as directed by the engineer. Materials shall be a nominal 150mm (-80mm + 100mm) well graded stone as approved by the engineer. All necessary excavation and shaping to provide uniform flowline in thecenter of the ditch shall be incidental to this work. No additional compensation will be allowed. Refer to details. 50 M2 for use at the direction of the engineer.
66	2507004000	ENGINEERING FABRIC Engineering fabric shall be material as specified for embankment erosion control, Article 4196.01C. Material shall be measured in sq.m. of actual are a covered. Refer to details. 200 m2 will be for use at the wetland mitigation site. 100 m2 will be for use at the direction of the engineer.
67	2510001000	RMVL OF PAV'T Dispose per notes 213-1 & 213-7. See Tab 110-1 for locations and details.
68	2515100200	PCC DRIVEWAY 200 MM See Tab 102-3 for locations and details.
69	2518000100	SAFETY CLOSURE These barricades designated for use at sideroad closures, shall be left in place after project completion & become the property of the Iowa D.O.T. See Tab. 108-13A and Standard Road Plan RS-26A. Item includes maintaining 14 previously placed.

connectors at all joints.

2416--130920 CONC ARCH 100D RDWY PIPE CULV 920X570 MM

connectors at all joints.

and details. Requires RF-14, Type 3

and details. Requires RF-14, Type 3

See Tab 104-3 and cross sections for locations

2422--300750 UNCL APRON 750 MM

C.02

# ESTIMATE REFERENCE INFORMATION

100-4

Data I	totad balay to fan Infan	
ITEM		mational purpose only and shall not constitute a basis for any extra work orders.  DESCRIPTION
NO.		
70	2518010310	PERMANENT RD CLOSURE (RURAL) RE-3A See tab 102-4 for location and details.
71	2518100032	PERMANENT RD CLOSURE (URBAN) RE-3B See tab 102-4 for location and details.
72	2519400000	SAFETY FENCE For surrounding of Arch. site on Johnson Mitigation Area. See "R" Sheets. Steel posts to be used and spaced a maximum of 5m apart. See Specification 2301.20 for additional information. The fence is to remain in place and become the property of the Contracting Authority when construction is complete.
73	2526001000	CONSTRUCTION SURVEY
74	2527101010	PAINTED PAV'T MARK WATERBORNE See Tab 108-22 for locations.
75	2527104010	PAINTED SYMBOL+LEGEND WATERBORNE See Tab 108-29 for locations and type.
76	2528101000	TRAFFIC CONTROL
77	2528107000	FLAGGER
78	2533100000	MOB IL IZATION
79	2538 102000	SEAL WELL Parcel 22 Sta. 50+05 Rt. 2 meters Parcel 23 Sta. 50+84 Rt. 54 meters Parcel 110 Sta. 1473+65 Lt. 28 meters
80	2599999915	FLAP GATE For Use at the wet land mitigation site. See Tab 104-3 for locaton and details. Neenah Automatic Gate R-5050-CF24, Armco Model 10C, or approved equivalent meeting ASTM A961
81	2599999917	MONITORING WELL Monitor Well, Furnish and Install, shall be as shown in the R sheets, detail MS-2. Measurement and payment shall be made for each unit supplied and installed including all materials, labor and tools required with removal of all packing materials from the site.
82	2601102050	NATIVE GRASS SEEDING The contractor shall furnish and apply an aquatic-labeled Glyphosate, such as "Rodeo", a non-selective systemicherbicide, and a aquatic-labeled surfactant, such as "Activate Plus", to all areas receiving seed mixes A and B.Application rate shall be 3.5 to 5.26 liters per hectare (3 to 4 1/2 pints per acre) of glysophate, and a 90%nonionic surfactant. The initial application shall be applied to actively growing vegetation in April 2002. Subsequent applications shall be made at a minimum of 10 day intervals until all areas are void of living vegetation. After complete kill of the vegetation, the area shallbe mowed to a 7.62 cm height. One mowing prior tospraying may be necessary to remove dead debris. The herbicide shall be applied by a licensed certified pesticide applicator, Category 6 Right of Way. Herbicide shall be applied when wind conditions are 16.09 km/h or less. Any regrowth of vegetation or non-kill areas shall beretreated before seeding at the Contractor's expense. Apply seed with a Truax

# ESTIMATE REFERENCE INFORMATION

100-4 07-15-97

Data listed below is for informational purpose only and shall not constitute a basis for any extra work orders. ITEM CODE DESCRIPTION or equivalent. Planting depth shall be approximately 3 mm. Contractor shall not apply seed in wet conditions that would cause the seed to be placed deeper than specified. Seed mixes are on sheet R.O3. Seed origin shall be from Iowa or it's adjacent states. Seed shall be mixed prior to arriving on the project at a site designated by the Engineer. Seeding shall be accomplished prior to June 15, 2002. Seeded areas that are not excessively wet shall be moved at a 15.27 cm height, in four week intervals, three times in 2002. Contractor shall contact the lawnowner, Steve Johnson at 515-479-2487, prior to accessing the site for mowing. The contractor shall reseed any disturbed ground in the seeding areas that results from the contractors activity throughout the contract period. Herbicide, mowing, re- seeding and related activities shall be incidental to this item with no extra compensation allowed. Any repairs or reshaping of the berm shall be accomplished prior to spraying the existing vegetation. STABILIZE CROP SEED+FERTILIZE 83 | 2601--10300 Included for all rural areas of the right of way as designated by the Engineer. SEED MIXTURE (Rural) Spring--March 1 to May 20 72 kg per hectare Winter Rye 63 kg per hectare Red Clover 6 kg per hectare Timothy 6 kg per hectare |Summer--May 21 to July 20 108 kg per hectare Annual Ryegrass 39 kg per hectare Red Clover 6 kg per hectare Timothy 6 kg per hectare Fall--July 21 to September 30 72 kg per hectare 125 kg per hectare Winter Rye Red Clover 6 kg per hectare 6 kg per hectare Timothy Fertilizer: Rate--500 kg of 13-13-13 or equivalent chemically combined commercial fertilizer per hectare. ------2601--104200 MULCH Mulching: Areas disturbed but not seeded with stabilizing crop by September 30 shall be scarified to a 75 mm depth, fertilized and mulched. All mulch to be consolidated into soil with the mulch stabilizer. SLOPE PROTECTION WOOD EXCEL MAT RC-14 Locations to be designated by the engineer. Shaping of eroded slopes will be incidental to this item. Refer to Std. Road Plan RC-14. 86 2601--109010 Includes one watering of the special ditch control and slope protection, rate 20 L per sq. meter. Refer to article 2601.19 for schedule and procedure only. Additional watering (3) may be requred at the discretion of the engineer subject to local weather conditions and will be paid for at the contract unit price ______ 2602--000020 | SILT FENCE See Tab 100-17 for locations. Includes an additional 25% for replacements as needed.

# ECTIMATE DEEDENCE INCOMATION

100-4

E	SIIMAIE	REFERENCE INFORMATION  07-15-97
	T	rmational purpose only and shall not constitute a basis for any extra work orders.
ITEM NO.	ITEM CODE	DESCRIPTION
89	2602000050	SILT BASIN Item is for placement and two (2) cleanouts each. Placement to be at inlet of 29 Roadway Pipes(Tab 104-3), 9 Entrance Pipes(Tab 102-3), and 3 RCB's (Tab 104-4).
90	2602000090	CLEANOUT OF SILT FENCE See Tab 100-17 for locations. Includes an additional 100% for extra clean-outs.
91	2602000100	CLEANOUT OF SILT FENCE - DITCH CHECK See Tab 100-18 for locations. Includes an additional 100% for extra clean-outs.
92	2610000120	TREES, FURNISH AND INSTALL Furnish and install trees in the spring of 2002. Excavation dimensions of planting wells shall be 60.96 cm diameter minimum. Backfill shall be firmed around the roots by tamping, but vigouous tamping shall not be permitted. The contractor shall take care during backfilling to avoid damage to the roots. Contractor shall build a tree ledge for each tree with the soil excavated from the wetland. Trees shall be installed in the center of the tree ledge. See sheet R.03. The contractor shall furnish and apply mulch according to the follow: Mulch depth shall be 12.7 cm. Mulch width shall be a 2 m diameter circle with the tree located in the middle of the circle. Mulch shall be pulled back 1.27 cm - 2.54 cm from the plant trunk to allow air circulation. Fertilizer, watering, wrapping, staking and guying will not be required. Mulching, tree ledges, pruning and related activity shall be incidental to this item with no extra compensation allowed. The contractor shall be responsible for one repla-cement period.

METRIC DESIGN TEAM ABRAMS/SMITH IOWA DOT * OFFICE OF DESIGN

2602 - - 000030

SILT FENCE-DITCH CHECK

See Tab 100-18 for locations. Includes an

additional 25% for replacements as needed.

MARSHALL COUNTY PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

native grass drill that has a no-till attachment

Plan and profile sheets included in the project are for the purpose of alignment, location and specific directions for the work to be performed under this contract. Irrelevant data on these sheets is not to be considered a part of this contract.

During construction of this project, the contractor will be required to coordinate his operations with those of other contractors working within the same area. Other work in progress during the same period of the time will include construction of the following projects:

Type of Work
Grading & Paving Job
RCB
Bridge
Bridge
Bridge
RCB
RCB

The contractor is encouraged to take full advantage of specification 1105.15 - Value Engineering Incentive Proposal. A pamphlet and conceptual proposal form will be available at the preconstruction conference.

Pavement crossovers will be allowed on this project and overhaul has been estimated according to current specifications. The contractor will not be billed for crossovers located within areas which are designed for removal of pavement after cross hauling is completed.

09-27-94

Material listed within the plans as "unsuitable" is included in the template for class 10 excavation and is shown to indicate the location and distribution.

It shall be the contractor's responsibility to provide waste areas

or disposal sites for excess material (excavated material or broken concrete) which is not desirable to be incorporated into the work involved on this project. These areas shall not impact wetlands or "Waters Of The U.S." No payment for overhaul will be allowed for material hauled to these sites. No material shall be placed within the right-of-way, unless specifically stated in the plans or approved by the engineer.

09-27-94

The contractor's attention is directed to the following consideration in regard to removal and replacement of topsoil in borrow areas: Quantities estimated for topsoil are calculated on the basis of a uniform removal of topsoil to a depth of 0.3 meters. The material removed is to be spread uniformly to a minimum depth of 0.2 meters over the borrow area upon completion of excavation work.

09-27-94

All borrow areas, stockpile areas, haul roads and areas used for equipment on this project will require subsoil tillage to an average depth of 0.4 meters to 0.5 meters prior to placement of topsoil and/ or stabilizing crop seeding. Such tillage shall be accomplished on maximum of one meter centers and at right angles to the finished slope of the borrow.

Equipment used to accomplish the tillage shall be equipped with an arrowhead-type shoe so as to provide lateral displacement and limit the movement of the subsoil to the surface. It shall be approved by the Engineer for the use intended. This work will be considered incidental to other work on the project and no payment will be allowed.

It is intended that following subsoil tillage, the area remains in a "loosened" condition. Additional compaction or the operation of heavy equipment, other than required for topsoil placement and shaping shall not be allowed on areas which have received subsoil tillage.

The contractor shall apply necessary moisture to the construction area and haul roads to prevent the spread of dust. Refer to Article 1107.07 of the current Standard Specifications for additional details.

Unless otherwise directed or authorized, all hot mix asphalt and other bituminous materials which are not specifically addressed or described in the plans shall become the property of the contractor.

The contractor, in accordance with current rules and regulations of the Iowa Department of Natural Resources, may:

- 1. With the approval of the Engineer, blend or otherwise process the material for use with shoulder or special backfill aggregate, for use on the project.
- 2. With the approval of the Engineer, place with material in areas designated by the Engineer as Soil Aggregate Subbase without extra charge.
- 3. Remove the material from the project and stockpile for the contractor's future use.

The roadbed shall be trimmed to within 15 millimeters of the final subgrade elevation. Trimmed material shall be placed in a windrow on either foreslope for use in earth shoulder fill after paving. No ponding of water shall be allowed by the stored material.

Trimming of material shall be included in excavation required for Earth Shoulder Construction. Granular surfacing material, if placed over the winter, is included in the trimmed volume.

09-27-94

Construction of Class "A" subbase beneath P.C. concrete pavement shall be done only where shown on project plans. Unless specifically indentified on typical cross sections or other details, Class "A" subbase shall not be required for pavement areas outside the limits of normal roadway pavement. Added areas for turning lanes at intersections, paved median crossovers, etc. shall not require placement of Class "A" subbase.

09-27-94

proposed pavement removal.

medians and inside interchanges.

In order to avoid any unnecessary surface breaks or premature

spalling, the contractor is cautioned to exercise extreme care when

performing any of the necessary saw cutting operations for the

Special care shall be taken when forming at intersections so that

the profiles and elevations shown on the cross sections, street return

profile sheets, and staking diagram sheets are obtained. Short

lengths of forms or flexible forms may be necessary at these locations.

Any trees outside of the construction limits shall be removed only

by the approval of the engineer. This includes areas in divided

It will be necessary to clear along the right-of-way line to permit

installation of fence. This clearing should be done so as soon as

Contractor shall not disturb native grass areas outside the con-

The contractor shall not disturb desirable grass areas and desirable

trees outside the construction limits. The contractor will not be

permitted to park or service vehicles and equipment or use these areas for storage of materials. Storage, parking and service area(s)

The top 150 millimeters of the disturbed areas shall be free of rock

and debris and shall be suitable for the establishment of vegeta-

The contractor is expected to have materials, equipment, and labor

available on a daily basis to install and maintain erosion control

features on the project. This may involve seeding, silt fence, rock

Road contractor is to use due caution in working over and around

all tile lines. Breaks in the tile line due to the contractor's care-

lessness are to be replaced at his expense without cost to the State of Iowa. Any tile lines broken or disturbed by our cut lines will be

replaced as directed by the engineer in charge of construction and

will be subject to the approval of the resident engineer.

tion, subject to the approval of the Engineer.

Selective clearing will be required on this project.

possible with trees cut off at the ground line.

pavements.

09-27-94

12-08-95

09-27-94

struction limits.

09-27-94

09-27-94

10-28-97

09-27-94

07-15-97

Estimated quantity for new concrete pavement includes all integral curb, all street returns and special areas of repairs to connecting

232-4

Where indicated on the plans or when directed by the Engineer, existing sewer and drainage pipes which are to be abandoned in place shall be completely blocked with permanent bulkheads composed of either class X concrete or brick masonry. Salvaged brick may be used provided they are sound and meet the approval of the Engineer This work shall be considered as incidental work and the cost of such blocking of abandoned sewers and drainage pipes shall be considered to be included in the contract price for other items.

09-27-94

251-

The contractor shall be responsible to maintain access to individual properties during construction.

Relocated access shall be completed to individual properties prior to removal of existing access.

If the permanent access cannot be completed prior to removal of the existing access, the contractor shall provide and maintain an alternate access. Temporary Granular Surfacing will be paid for as a contract item or by extra work.

The contractor is hereby notified that removal of any existing traffic markers, warning devices or quardrail barriers shall be scheduled subject to the approval of the Engineer. The contractor may be required to place temporary warning devices at certain locations where replacement features are not installed the same day during which any such removals take place.

A plan for stage construction of local accesses which are required to remain open to traffic during construction shall be submitted by the contractor for approval by the engineer.

The centerline pavement marking shall always be placed on one side of the roadway except where a "No Passing Zone" line is used, at which point it is placed on the opposite side of the roadway. The centerline shall be placed on the same side of the roadway as to match existing markings near the project.

On all new or reconstructed pavements, the location of "NO PASSING" zone lines shall be located in the field. The locations of the proposed "NO PASSING" zone lines shown on the pavement marking tabulation is for estimating quantities only.

09-27-94

Blading and shaping as well as any other incidental work in preparation for any maintenance of temporary crossing or detours shall be considered incidental to other work on the project. Additional surfacing needed for temporary crossings or detours during construction shall be furnished and spread at contract price.

10-02-01

The detour(s) on this project have been designated to accommodate the Hot Mix Asphalt option. If the P.C. concrete option is utilized, "on-thesite" adjustments may be required as approved by the Engineer.

09-27-94

Before performing earthwork, tiling, or excavation within 91.4 meters of an existing pipeline, the contractor shall notify the pipeline company and the pipeline company shall mark the location of the pipeline as required by Section 479.47 of the Code of Iowa.

The contractor shall exercise all due caution when working in the vicinity of pipelines carrying combustible or toxic materials which are present on this project. Pipeline location shown on the plans represents the best information available at the time of plan preparation.

232-10

NHSX-30-5(166)--3H-64

SHEET NUMBER

C.04

DESIGN TEAM ABRAMS/SMITH

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL

at the State of Iowa's expense.

ditch checks, silt basins, or silt dikes.

PROJECT NUMBER

# POLLUTION PREVENTION PLAN

110-12 09-27-94

The prime contractor shall be responsible for compliance and implementation of the Pollution Prevention Plan (PPP) for their entire contract. This responsibility shall be further shared with subcontractors whose work is a source of potential pollution as defined

### 1. SITE DESCRIPTION

in this PPP.

This Pollution Prevention Plan (PPP) is for the construction of a 4-lane expressway facility on US 30 Marshall County from the 4.8km West of the Marshall & Tama Co. line to the Co. line.

The PPP covers approximately 113 hectares with an estimated 86 hectares being disturbed.

The PPP is located in an area of one soil association, (Tama-Muscatine) The estimated average SCS runoff curve number for this PPP after completion will be 66.

Refer to the Grading Plan (Marshall County NHS-30-5(136)--19-64 for locations of typical slopes, ditch grades, and major structural and nonstructural controls. A copy of this plan will be on file at the project engineer's office. Runoff from this project work will flow into various unnamed ditches and waterways which flow into the Iowa River

### POTENTIAL SOURCES OF POLLUTION:

Site sources of pollution generated as a result of this work relate to silts and sediment which may be transported as a result of a storm event. However, this PPP provides conveyance for other (non-project related) operations. These other operations have storm water runoff, the regulation of which is beyond the control of this PPP. Potentially this runoff can contain various pollutants related to site-specific land uses. Examples are:

### Rural Agricultural Activities:

Runoff from agricultural land use can potentially contain chemicals including herbicides, pesticides, fungicides. and fertilizers.

### Commercial and Industrial Activities:

Runoff from commercial, industrial, and commerce land use may contain constituents associated with the specific operation. Such operations are subject to potential leaks and spills which could be commingled with run-off from the facility. Pollutants associated with commercial and industrial activities are not readily available since they are typically proprietary.

### 2. CONTROLS

od Hist∓

Prior to beginning grading, excavation or clearing and grubbing operations, silt fence shall be placed by the grading contractor along the perimeter of the areas to be disturbed at locations where runoff can move offsite. Vegetation in areas not needed for construction shall be preserved. As areas reach their final grade, additional silt fences, shale basins, streambed riffles, riprap, silt basins, intercepting ditches, sod flumes, letdowns, bridge end drains, and earth dikes shall be installed as specified in the plans and/or as required by the project engineer. This will include using silt fence as ditch checks and to protect intakes. Temporary stabilizing seeding shall be completed as the disturbed areas are constructed. If construction activity is not planned to occur in a disturbed area for at least 21 days, the area shall be stabilized by temporary seeding or mulching within 14 days. No more than 70,000 square meters of exposed erodible area is allowed in any one grading spread without permission of the project engineer. Other stabilizing methods shall be used outside the seeding period.

This work shall be done in accordance with Section 2525 of the Standard Specification. If the work involved is not applicable to any contract items, the work shall be paid for according to Article 1109.03 paragraph B.

# POLLUTION PREVENTION PLAN

110-12 09-27-94

As the work progresses, additional erosion control items such as rock or sod flumes, ditch checks, subsurface drains, letdown structures. & other appropriate measures shall be installed by the paving or erosion control contractor as determined by the engineer after field investigation. The construction will be completed with the establishment of permanent perennial vegetation of all disturbed areas by the erosion control contractor.

### 3. OTHER CONTROLS

Contractor disposal of unused construction materials and construction material wastes shall comply with applicable state and local waste disposal, sanitary sewer, or septic system regulations. In the event of a conflict with other governmental laws, rules and regulations, the more restrictive laws, rules or regulations shall apply.

### APPROVED STATE OR LOCAL PLANS:

During the course of this construction, it is possible that situations will arise where unknown materials will be encountered. When such situations are encountered, they will be handled according to all federal, state, and local regulations in effect at the time.

### 4. MAINTENANCE

The contractor is required to maintain all temporary erosion control measures in proper working order, including cleaning, repairing, or replacing them throughout the contract period. Cleaning of silt control devices shall begin when the features have lost 50% of their capacity.

### 5. INSPECTIONS

Inspections will be made jointly by the contractor and the contracting authorit every seven calendar days and after each rain event that is 13mm or greater. The contractor shall immediatley begin corrective action on all deficiencies found. The findings of this inspection shall be recorded in the project diary. This PPP may be revised based on the findings of the inspection. The contractor shall implement all revisions. All corrections shall be completed within 3 calendar days of the inspection.

# 6. NON-STORM DISCHARGES

This includes subsurface drains (i.e. longitudinal and standard subdrains), slope drains and bridge end drains. The velocity of the discharge from these features may be controlled by the use of patio blocks. Class A stone or erosion stone.

# STAGING NOTES

108-26 09-27-94

Staging sequences listed below are suggestions only. The intent of this staging is to close Ia 146/T-37 after the 2002 school session is over and open to normal traffic before the Fall 2002 school session begins. It is suggested that when school is in session the contractor only use the RS-3 lane closures when the school buses are running. The Contractor will submit proposed staging sequencing to the Engineer for approval. Stage 1:

- 1. Grade Mainline EB & WB from Sta. 51+50 to Sta. 84+00
- 2. Close Ia 146/T-37 and Grade & Pave from Sta. 1462+40 to Sta. 1477+16.
- 3. Grade & pave detour pavement on Ia 146/T-37 from Sta. 1461+87 to Sta. 1462+40 & open to traffic
- 4. Grade and granular surface 235th St and Johnson drive at Sta. 1469+80 (Ia 146)
- 5. Build berms for WB bridge left Sta. 21± Stage 2:
- 1. Pave EB sections from Sta. 24+60 to Sta. 47+30 & Sta. 88+75 to Sta. 92+50
- 2. Grade & pave temporary detours right Sta. 23±, Sta. 48±, & Sta. 88± (Use RA-3 traffic control during work times and 2-lane operation during non-work times)
- 3. Pave County Road T-31 right Sta. 37+17 (US 30)
- 4. Complete all entrance connections to the new paved sections.

## SECTION 404 PERMIT CONDITIONS

404PC Special

- 1. Equipment for handling and conveying materials during construction shall be operated to prevent dumping or spilling the material into waterbodies, streams or wetlands except as approved herein.
- 2. Construction activities shall be conducted during low to normal flows and the Iowa Department of Transportation shall employ controls to reduce the erosiveness of land adjacent to surface waters and wetlands, including establishment and maintenance of the erosion controls during and after construction and revegetation of all disturbed areas upon project completion. The prime contractor shall be responsible for installation of all erosion control measures.
- 3. Care shall be taken to prevent any petroleum products, chemicals, or other deleterious materials from entering waterbodies, streams or wetlands.
- 4. All construction debris shall be disposed of on land in such a manner that it cannot enter a waterway or wetland.
- 5. Construction equipment, activities, and materials shall be kept out of the streams and wetlands to the maximum extent possible.
- 6. Temporary construction crossings, structures, and fills shall involve the least damaging and minimum amount of disturbance/impacts to waters of the state and appropriate measures must be taken to maintain near normal downstream flows and minimize flooding. Fills shall be placed in such a manner that the material will not be eroded by high flows. All temporary fills shall be completely removed to upland, non-wetland sites and the area restored to pre-project conditions within 30 days of the end of their use.
- 7. Clearing of vegetation, including trees located in or immediately adjacent to waters of the state, shall be limited to that which is absolutely necessary for construction of the project. All vegetation clearing material shall be removed to an upland, non-wetland disposal site.

# TRAFFIC CONTROL PLAN

09-27-94

108-23

LOCATIONS OF ROAD CLOSURE BARRICADES

STANDARD (W)

Refer to Standard Road Plan RE-3A. RE-3B

102-4 10-03-00

- I. Traffic will be maintained on Present U.S. 30 at all times. County Road T-37\IA146 and 235th Street, will be closed as necessary when reconstructed. Access will be maintained in accorance with standard note 251-1.
- 2. When IA146 is closed traffic will be detoured.
- 3. Traffic control on this project shall be in accordance with Standard Road Plans shown on A.01 (Tab. 105-4). For additional complementary information, refer to Part VI of the Manual on Uniform Traffic Control Devices and to the current Standard Specifications.
- All traffic control devices shall be furnished, erected, maintained and removed by the contractor.
- Where possible, all post-mounted signs shall be placed at least 0.6 meter beyond the curb or edge of shoulder.
- 6. The location for storage of equipment by the contractor during nonworking hours shall be as approved by the Engineer in charge of construction.
- . Proposed sign spacing may be modified as approved by the Engineer to meet existing field conditions or to prevent obstruction of the motorist's view of permanent signing.
- 8. Permanent signing that conveys a message contrary to the message of the temporary signing and not applicable to the working conditions shall be covered by the contractor when directed by the
- 9. Proposed changes in the traffic control plan shall be reviewed with the Office of Construction before changes are made.

COUNTY

	LOCATION	ATION REMARKS		
No.	Station	ROAD PLAN	meters	
1	75+70 Rt	RE-3B	N/A	Culdesac in Next Proj.
2	75+70 Lt	RE-3A	N/A	
				A STATE OF THE STA
		THE RESIDENCE OF A SECRETARY OF THE PROPERTY O		
				· · · · · · · · · · · · · · · · · · ·
			<u> </u>	
		The state of the s		
		·		
***				

DESIGN TEAM ABRAMS/SMITH

: Dec witte A403 (3009) (1485an 464030166.50)

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL

PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

C.05

### 100-18 TABULATION OF SILT FENCES FOR DITCH CHECKS 09-27-94 LOCATION STATION SIDE REMARKS 51+50 6.0 Ditch Check 51+50 6.0 Ditch Check 10.0 Ditch Check 51+80 52+13 8.0 Pipe Inlet 53+00 6.0 Ditch Check 54+20 6.0 Ditch Check 10.0 RCB Inlet 54+64.72 55+40 16.0 Ditch Check 56+60 Ditch Check 56+70 10.0 | Ditch Check 56+70 10.0 Ditch Check 57+60 10.0 | Ditch Check 57+80 10.0 Ditch Check 57+80 6.0 Ditch Check 59+00 Ditch Check 59+40 Pipe Inlet 6.0 60+14 Pipe Inlet 60+20 Ditch Check 61+23.25 RCB Inlet 16.0 61+40 Ditch Check 62+00 6.0 Pipe Inlet 62+60 Ditch Check 63+80 Ditch Check 65+00 10.0 Ditch Check 66+20 Ditch Check 67+40 Ditch Check 68+60 Ditch Check Pipe Inlet 6.0 69+80 Ditch Check 10.0 Ditch Check 71+00 72+00 Pipe Inlet 6.0 72+20 Ditch Check 72+80 Ditch Check Lt 8.0 73+40 Ditch Check 73+80 8.0 Pipe Inlet 74+00 10.0 Ditch Check 74+20 Ditch Check 10.0 74+60 Ditch Check 10.0 75+20 10.0 Ditch Check 75+40 6.0 Pipe Inlet 75+80 10.0 Ditch Check 10.0 Ditch Check 76+00 76+40 Lt 10.0 Ditch Check 76+60 Ditch Check 10.0 77+00 Ditch Check 77+80 10.0 Lt Ditch Check 77+80 10.0 Ditch Check 78+20 Ditch Check 10.0 79+00 10.0 Ditch Check 79+00 10.0 Ditch Check 79+40 10.0 Ditch Check Lt 80+20 10.0 Ditch Check 80+20 10.0 Ditch Check 80+60 10.0 Ditch Check 81+40 Rt 10.0 Ditch Check 81+80 10.0 Ditch Check 82+60 Rt 10.0 Ditch Check 83+00 10.0 Ditch Check 83+40 Med Pipe Inlet 83+80 10.0 Ditch Check 84+20 Ditch Check 85+00 Rt 10.0 Ditch Check 85+40 Med 10.0 Ditch Check 86+20 10.0 Ditch Check 86+60 10.0 Ditch Check 87+20 Lt 10.0 Ditch Check 87+40 Ditch Check 87+80 Med 10.0 Ditch Check 10.0 Ditch Check 88+40 Lt Pipe Inlet 88+60 6.0 88+60 6.0 Ditch Check 89+00 10.0 Ditch Check 89+20.25 16.0 RCB Inlet Rt 89+40 Lt 10.0 Ditch Check

TABULATIO	ON OF	SILT	FENCES
FOR	DITCH	CHEC	KS

_	
	100-18
	09-27-94

LOCATION STATION	SIDE	m	REMARKS
S.R. "F" Cul-de-sac			
1+15	Rt	6.0	Ditch Check
Drive 1 1300+20	Lt	4.5	Ditch Check
1300+20	Rt	4.5	Ditch Check
1300+80	Lt	4.5	Ditch Check
1301+20	Rt	4.5	Ditch Check
1301+60	Rt	6.0	Pipe Inlet
1302+20	<u>Lt</u>	4.5	Ditch Check
1302+20	Rt	4.5	Ditch Check
1302+80 1303+00	Rt Lt	6.0 4.5	Pipe Inlet Ditch Check
1303+00	Rt	4.5	Ditch Check
1304+20	Lt	4.5	Ditch Check
1304+20	Rt	4.5	Ditch Check
S.R. "E"			
1464+40	Lt	4.5	Ditch Check
1465+20	Rt	4.5	Ditch Check
1465+60	Lt D	4.5	Ditch Check
1465+60 1466+40	Rt Rt	16.0 4.5	RCB Inlet Ditch Check
1466+80	Lt	4.5	Ditch Check
1467+80	Rt	6.0	Ditch Check
1468+00	Lt	4.5	Ditch Check
1469+00	Rt	10.0	Pipe Inlet
1469+20	Lt	4.5	Ditch Check
1470+00	Lt	10.0	Ditch Check
1470+20	Rt	10.0	Ditch Check
1470+60 1471+80	Rt Rt	6.0	Ditch Check
1473+00	Rt	6.0	Ditch Check Ditch Check
1473+40	Lt	6.0	Ditch Check
1473+80	Lt	6.0	Pipe Inlet
1473+80	Rt	6.0	Pipe Inlet
1474+20	Rt	10.0	Ditch Check
1474+40	<u> </u>	10.0	Ditch Check
1475+40	Lt	6.0	Ditch Check
1475+40 1475+80	Rt Rt	6.0 6.0	Ditch Check
1476+40	Lt	6.0	Pipe Inlet Ditch Check
1476+60	Rt	6.0	Pipe Inlet
1476+60	Rt	6.0	Ditch Check
Detour 1			
2047+80	<u>Lt</u>	10.0	Ditch Check
2047+80	<u>Lt</u>	6.0	Pipe Inlet
2049+00 2049+00	Lt     Rt	6.0	Ditch Check
2049+20	Lt	6.0	Ditch Check Pipe Inlet
2049+40	Rt	6.0	Pipe Inlet
2050+20	Lt	6.0	Ditch Check
2050+20	Rt	6.0	Ditch Check
2051+40 (Ent.1 Det	tour ) Rt	6.0	Ditch Check
Detour2			D
2085+00	Rt	6.0	Ditch Check
2086+20 2087+00	Rt	6.0 10.0	Ditch Check Ditch Check
2087+40	Rt	6.0	Ditch Check
2088+20	Lt	6.0	Ditch Check
2088+60	Rt	6.0	Ditch Check
2088+60	Lt	6.0	Pipe Inlet
S.R. "C2"			
2253+23	Lt	4.5	Ditch Check
2253+23	Rt	4.5	Ditch Check
S.R. 1		A F	Dittal Object
9001+15.5	Lt D+	4.5	Ditch Check
9001+15.5 9002+00	Rt Lt	4.5 6.0	Ditch Check
9002+00	Rt	6.0	Pipe Inlet Pipe Inlet
9002+00	Lt	4.5	Ditch Check
9002+20	Rt	4.5	Ditch Check
9003+40	Lt	4.5	Ditch Check
9003+40	Rt	4.5	Ditch Check
9004+42.35	Lt	6.0	Pipe Inlet
9004+60	Lt	4.5	Ditch Check
9004+60	l Rt l	4 5	Initch Check

# TABULATION OF SILT FENCES FOR DITCH CHECKS

100-18 09-27-94

100-17

1 011 521 611			0, 21, 14
LOCATION STATION	SIDE	m	REMARKS
9005+60	Lt	6.0	Pipe Inlet
9005+80	Lt	6.0	Ditch Check
9007+00	Lt	6.0	Ditch Check
9007+40	Rt	4.5	Ditch Check
9008+20	Lt	4.5	Ditch Check
9008+60	Rt	4.5	Ditch Check
9008+80	Rt	6.0	Pipe Inlet
9008+90.5	Lt	4.5	Ditch Check
9008+90.5	Rt	4.5	Ditch Check
Ramp B			
1567+80	Lt	6.0	Ditch Check
1567+80	Rt	6.0	Ditch Check
1569+00	Lt	6.0	Ditch Check
1569+00	Rt	6.0	Ditch Check
1570+20	Lt	6.0	Ditch Check
1570+20	Rt	6.0	Ditch Check
Ramp B			
2564+80	Lt	6.0	Ditch Check
2564+80	Rt	6.0	Ditch Check
2566+00	Lt	6.0	Ditch Check
2566+00	Rt	6.0	Ditch Check
2567+00	Lt	6.0	Pipe Inlet
2567+20	Rt	6.0	Ditch Check
2567+20	Lt	6.0	Ditch Check
Ramp C			
3565+60	Rt	6.0	Pipe Inlet
3566+00	Lt	10.0	Ditch Check
3567+20	Lt	10.0	Ditch Check
Ramp D			
4567+80	Lt	6.0	Ditch Check
4567+80	Rt	6.0	Ditch Check
4568+00	Lt	6.0	Pipe Inlet
4569+00	Lt	6.0	Ditch Check
4569+00	Rt	6.0	Ditch Check
4569+80	Rt	6.0	Ditch Check
4570+20	Lt	6.0	Ditch Check

# TABULATION OF INTERCEPTING DITCHES

100-16 09-27-94

TABUL	ATION OF	SILT	FENCE	ES	100-17 09-27-94
L	OCATION		LENGTH	חרי	AADKC
STATION T	O STATION	SIDE	m	KEI	MARKS
51+50	56+70	Lt	520		
51+40	56+70	Rt	530		
57+80	72+60	Lt	480		
58+00	74+00	Rt	600		
80+80	87+20	Lt	640		
89+40	89+80	Lt	40		
89+60	90+00	Med	40		
					:

# TABULATION OF SILT FENCES

100-17 09-27-94

LOCATION		LENGTH REMARKS		
STATION T	STATION TO STATION		m	REMARKS
Drive 1				
1301+00	1302+00	Lt	100	
1301+40	1302+00	Rt	60	
1302+60	1303+00	Lt	40	
1302+80	1303+00	Rt	20	
S.R. E				
1462+40	1464+20	Lt	180	
1462+40	1465+20	Rt	280	
1470+00	1472+00	Lt	200	
1472+40	1473+20	Lt	80	
1474+20	1475+40	Rt	120	
1476+40	1477+14.463	Lt	75	
Detour1				
2047+40	2047+80	Lt	40	
2047+40	2049+00	Rt	160	
2051+40	2052+80	Rt	140	
Detour 2				
2084+00	2084+60	Rt	60	
2086+20	2086+80	Lt	60	
2088+20	2088+60	Lt	40	
S.R. 1				
9005+20	9007+20	Rt	200	
Ramp A				
1570+80	1570+80	Lt	140	
1571+00	1571+00	Rt	120	
Ramp B				
2563+40	2563+40	Lt	100	
2563+40	2563+40	Rt	60	
Ramp C				
3563+60	3563+60	Lt	260	
3563+60	3563+60	Rt	420	
Ramp D				
4569+80	4569+80	Lt	260	
4571+00	4571+00	Rt	140	

L	OCATION		LENGTH	REMARKS
STATION T	O STATION	SIDE	m	NEMANNS
76+00	78+00	Lt	200	
76+40	80+00	Rt	360	
1567+80	1568+80	Lt	100	
2565+00	2565+80	Rt	80	
1467+40	1468+00	Lt	60	
1467+40	1468+00	Rt	60	
1468+80	1469+40	Rt	60	
1475+40	1476+40	Rt	100	

Rt

9004+60

9005+20

4.5 Ditch Check

4.5 Ditch Check

COUNTY

89+60

89+60

Med 10.0 Ditch Check

Ditch Check



① Refer to RB-3 ② Refer to RL-7						PC	DINTS	OF A	CCESS						0-6	er to Cross Se	otions	102-3 10-03-00	7					
LOCATION	Тур	_	ENGTH OF O 40 mm Dropped	PENING (1) 75 mm Dropped		0 0			PE CULVER OA or RF-3 Size	30B)		SU		AREA DRI		er to cross se	REMARKS		4					
Station 22+80.00	Side (A, E or C	3, (1, 2,	Curb	Curb	W m 7.2	PR) m	H m Dry	450 mm m		m		RONS A.C	6.C.   1	MA]	TERIAL Mg		MEMARKS							
24+76 28+66.5 33+06.65	Rt/Med Rt/Med Rt/Med													2 2 3	0 0									
37+16 42+18 46+70.00 46+70.00	Med Rt/Med Rt Med				7.2		0.366	104-3						10	0									
89+40.00 1463+26.29 1463+50.95	Med Lt Rt	1 1	12 12		12 3.5 3.5	4	Dry Dry Dry	-			-		3	30	1									
1465+00.00 1470+00.00 1473+25.26	Rt Rt Lt	1	30		9 8.4 4.8	10	Drý U.A.C Dry				-			1	8									
1473+74.08 1473+84.24 1475+79.69 1476+64.84	Rt Rt Rt				5.5 5.5 5.5 5.5		0.431 0.498	14.69 21.08 16.43 17.12			2 2 2			2 2 7 2	6 0									
9002+00.00 9002+00.00 9004+42.00	Lt Rt Lt				5.5 5.5 5.5		0.28 0.28 0.3				2 2 2			1 1 2	8						•			
9005+00.00 9007+90.00 9008+85.00	Lt Lt Rt				5.5 5.5 5.5		0.34 Dry 0.31	20 30 11 58 11 .64			2 2 2			3	5 0									
9008+99.00 9008+81.00 9001+45 9001+40								71.00 -13.00 -1.14 -1.83			2					P.pe Repa	in							
LIST	OF INT	AKES /	AND UT	LITY A	CCESSE	S		04-5A 9-27-94									LIST	OF STO	ORM SE	ER PIPE				104-5B 09-27-94
NUMBER	LOCATION		TYPE OR STANDARD ROAD PLAN	FORM GRADE Elev.	BOTTOM WELL Elev.		NOTE		LINE NUMBER	From	LOCATION	То	CL,	ASS PIF	ETER OF	ENGTH F LINE	SLOPE // E	INLET Elevation	FLOW LINE OUTLET Elevation	OTHER	GRANULAR BACKFILL Mg	PIPE PROFILE SHEET NO.	NOTE	
2 Sta.	1463+98 Lt 1463+98 Rt 1465+18 Rt		RA-68 RA-68 RA-68	279.560	278.294 I 278.190 I 274.365 I	a 146/T-	37	] =	L-1 1 L-2 2 L-3 3		78 2 78 3	et 1465+3	25	100 100 100	375 450	14.60 /24.37 7+ Apron	0.92 3.08 4.5	278.5 278.3 274.50	278.3 274.6 274.0	66	Tig Tig	M.05 Ia 146/T-37 M.05 Ia 146/T-37 M.05 Ia 146/T-37		
										TA	BULATI	ON OF	DAY	/EMENT	MADI	/INGS								108-22
② Broken Center					ing Zone Line		·		(7) Edge Lin	ne Right (Whi	te)			Ootted	Line (White)		① Channel			3) Stop Line (White		① Yellow Curb		10-31-95
3 Double Center	LC	CATION ION TO ST	ATION	SIDE	Lane Line (White	<u> </u>	3	5	8 Edge Lin	(7)		9		Solid La	one Line (Whi	12)	(2) Channelli	lizing Line (Yel	(15)	Crosswalk Line	(White)	(6) White Curb REMARKS		
IDENTIFICATION  Ia. 146	1462+40	to	1470+66					1802.6																
Ia. 146 Ia. 146 Ia. 146 Ia. 146	1462+40 1464+00 1465+45 1470+66		478+14.928 478+14.928 1470+66 1476+00		825. X		34.0			2710.0	6					290.9								
T-31	1034+40		1036+99.06		260	0				516.4							7.0							
(																								
-																								
	QUANTIT	SUBTOTALS Y FACTORS			1,08	.25	34.0	1802.6	.25		1		.33	1	2	290.9	7.0	1.5						
DESIG	TOTALS  IGN TEAM AB		MITH		1 2/1.	25 10 METRI		1802.6	WA DOT *	0FFICE OF			I			MARS		COUNTY	PROJECT NUM	BER NHSX	(-30-5(166	)3H-64	SHEET NUMBER	C.08

.

# DRAINAGE STRUCTURE BY ROAD CONTRACTOR

LOCATION	TYPE	SIZE	KIND OF	LENGTH NEW	G CLASS	COVER (H)	E	APRON NO.	ADAPTORS* RF-2	CONNECTED PIPE JOINT		LINE ELE	EVATIONS		DIMEN	ISIONS		SKEW AHE	EAD		DIKE		CLASS	EMBANK- MENT	REMARKS
LOOKTION			PIPE	CONST.	EDDING	SIGN (	AMBEF	Inlet Outl		RF-14		DA	Other	<del></del>	tal	Extens		Degree		Rt.	Location Station	Top Type	20	IN PLACE	KEMAKKS
23+80, 11.7	RT 1101	mm 600	RF-1	19.47	8	0.75	-	1 1	et Type No.	Type No	273.4	Rt. 273.0	Other -	10.06	Rt. 13.11	Lt.	Rt.		Rt. -			1	m ³	m3	
<del>47+00 R1, 14</del> 47+80 R1, 14	RT 1201	<del>600</del> 600	RF - 1	24.99 27.43		2.23	-	1			264 265.75	265.95 263.86	<del>264.37</del> 264.06		9.75 19.51			-	-				0		12 nable to Jack (Broken Conc.) 5°BEND, F= 10M
46+70 R2, 32 <del>47+00, 14 RT</del>	1601	750 <del>- 600</del>	UNCL UNCL	20.11		0.71	-	1 1			267.1 270.2	268.05 270.1	-	15.54	8.23			-	-				0 50		(2)
51+50 52+13.00	1201 1101	600 1200	RF - 1 175D	24.20 80.32		1.3	.16	1 (7)			276.4 270.5	275.0	275.3	10.48	17.72 39.31				4				0 117		=16.33, 1 - 5°BEND CLASS B BEDDING
59+40, 14 RT	1501	600	RF-1 CMP	17.02 29.26		0.77	-	1(7)	C-3 1		270.5 277.25	269.4	276.85 269.45	9.75	37.22								0		(3)
60+14 60+14 63.6 L	1101 1101	1050 1200	RF - 1 1750	111.5 <i>5</i> 34.00		11.24	.16	1 1			265.57 265.00	265.62 263.25	-	56.69	56.69 24.44			- 25 15	5				49		To Be Jacked
62+10	1501	600	RF-1 CMP	20./3 44.5		0.69	-	1(7)	C-3 1		275.85		275.43 264.12	10.97	54.96								12		(4)
2567+00 3565+68.50	1101	600 600	RF-1 150D	20.11		0.94	-	1(7)1(7 1(7) 1	)		272.25 270.6	272.1	-	14.02 24.08	9.75 24.08			<u> </u>	-				62 51		CLASS C BEDDING
1301+58.29 1302+76.07	1601 1601	750 750	UNCL UNCL	12.19 10.97		1.09	-	1 1 1			268.5 270.4	269 270.9	-	7.93	6.71 6.71			- 36	- 6				2		
1 <del>469+00.00</del> 1470+ 37	1101 1101	<del>920X570</del> 900	RF - 1	29.87 44.50		0.96 2.1	_	1 (7 ) 1 (7 1 (7 ) 1 (7	)		<del>274.1</del> 272.5	<del>274.2</del> 275.2	-	29.26	13.41 14.63			5	-				102 190		Plugged + Abandoned tea 7°30′ 'D' Sec., 6.3 m. L
1472+48.00 1474+89.00 9005+60.00 4568+00.00 68+50.00	1101 1101	750 900	RF - 1 RF - 1	21.95 33.53		0.9	.01	1 (7 ) 1 1 (7 ) 1			277.7 268.1 283.3	278.24 271.6 283.25	-	14.33 22.56 8.53	11.28			27	_				50 306		
9005+60.00 4568+00.00	1601 1101	600 600	UNCL RF - 1	13.43 22.56		2.6 1.17 0.9 0.73	-	1 1 1(7) 1			283.3	283.25 272.1 281.2	-	8.53 14.94	13.41 8.53 11.28 10.06			<del> </del>	-				26 70		
	1501	600	RF-1 CMP	19.52 19.68			-	1(7)	C-3 1		275.5		280.76 275.64					-	-				70		(5)
71+91.00 73+87	1101 1101	1050 900	150D RF - 1	136.64 84.74		4.8	.01	1 1 1(7) 1			279.6 281.2	276.2 279.7	-	64.92	81.99 46.33			10	-		and to be		683 234		CLASS C BEDDING
75+40, 14RT 79+40.00, 14	1101 RT 1101	600 600 600	RF - 1 RF - 1 RF - 1	23.16 21.94		2.2 0.93 0.89 0.76	-	1(7) 1			277.1	280.5 276.3	-	43.28 10.36 9.75	16.46 15.85			<del> </del>	-	MED MED	75+46.5 79+50	281.9 M 277.7 M	62 26 29		
83+40.00, 14			CMP	17.68			-	1(/)	C-3 1		269.7		269.3 264.53	10.11	29.38								29		(6)
88+60.00, 14 2704+74, 9 RT	1101	600 600	RF-1 CMP <i>RF-1</i>	19.5		0.75	-	1(7)1(7	)		260.6 258.0	260.1 258.0	-	9.75 4.87	13.41			<b></b>	-				63	· · ·	lap Gate on the Outlet
67+84 1567+80	1101	600 920×570		78.03 23.80				1(7)1(7															854		4.02m removed + relayed from 469+00 9.78m new
9008+81	1601	450	UNCL	13.0				1 !																	469+00 9.7Bm new
	1601	450	UNCL	19.0																					
									And the second s																
																	•								

- 1 JACK 23.17M PIPE AND INSTALL OUTLET APRON (FUTURE PROJECT TO BE TYPE 1201) INSTALL 23 30' BEND AND PLACE REMAINING 1.82 PIPE & APRON. F=25.00
- 2 TEMPORARY MEDIAN PIPE
- 3 A=17.02, B=24.69, C=0.9, E=3.67, TWO 17 30' ELBOWS
- 4 A=15.91, B=37.61, C=0.6, E=6.29, TWO 17 30' ELBOWS
- 5 A=11.29, B=17.07, C=0.6, E=4.27, TWO 17 30' ELBOWS
- 6 A=17.68, B=15.85, C=0.6, E=4.27, TWO-17 30' ELBOWS
- 7 RF- 26 ALL RF-1 PIPES ARE CLASS 100D UNLESS OTHERWISE NOTED

# HYDRAULIC DESIGN



I hereby certify that this plan was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

David R. Claman

Printed or Typed Name

My license renewal date is December 31, 20 💆 🔼

Pages or sheets covered by this seal: Sheets C.09-C.10

HREARDINE DENZ CamithE : Frometta 84130787470 Tentan kakifiteewood

# DRAINAGE STRUCTURES BY CULVERT CONTRACTOR

104-4	
4-30-96	

	DESIGN			LENGTH NEW NO	. OF	FLOW LINE	ELEVATION	j		DIMENSI	ONS - m		SKEW	AHEAD		BY ROAD CON DIKE	TRACTOR	COMP	
LOCATION	DESIGN NUMBER	SIZE	KIND	CONST. AP	RONS			•	To	tal	Exten	sions	Degr	rees	Rt.	LOCATION CTATION	TOD SUSW	TYPE BACKFILL m3	REMARKS
		m		m	Left	Right	Other	Other	Left	Right	Left	Right	Left	Right	Lt.	LOCATION STATION			
54+64.72	898	1.8 X 1.2	RCB RCB	118.260	- 266.5	00 268.500	_	-	62.18	56.08	-	-	-	5				107	BELL JOINT. USE O ° HEADWALLS
61+23.25	998	3.6 X 2.4	RCB	165.20	- 262.5	00 263.00	-	<b></b> .	76.20	89	-	-	-	45				476	BELL JOINT, USE O ° HEADWALLS BELL JOINT
										V									
			<del></del>																
			<del></del>												ļ				
															ļ				
															<b>_</b>				
															-				
																70.0			
															<del>                                     </del>				
															<del>  </del>				
														· · · · · · · · · · · · · · · · · · ·	1				

# DRAINAGE STRUCTURES BY ROAD CONTRACTOR

104-4	
Mod1f1ed	

	DESIGN			LENGTH NEW NO.	OF	FLOW LINE E	EVATION			DIMENSI	ONS - m		SKEW	AHEAD		BY ROAD CON DIKE	TRACTOR	1 6	COMP.	
LOCATION	DESIGN NUMBER	SIZE	KIND	CONST. APRO	NS		I		Tot	tal	Exte	nsions	Deg	rees	Lt. Rt.	LOCATION STATION	TOP ELEV.	TYPE BA	CKFILL	REMARKS
1465+75.00	1098	3.0 X 1.8	RCB	43.890	- 270.200		-	_	23.77	20.12	-	-	-	15					95	REMOVE
													WIN THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPERTY OF THE PROPERTY O							
						ļ						-								

1 Refer to Standard Road Plan RF-19C. ② Refer to Soils Sheets. 3 Refer to Standard Road Plan RL-15.

TABULATION OF LONGITUDINAL SUBDRAIN SHOULDER AND BACKSLOPE

TABULATION OF SETTLEMENT PLATES TO BE RECORDED Refer to Standard Road Plan RL-6

103-5 09-27-94

NO.		ATION	DEMADIC
NO.	Station	Side	REMARKS
1	60+79	WBL	
2	60+99	EBL	
		The second of th	
-			
			<u> </u>

	Pasa	LOCATION				T	LUNG	TIUDINA	L SUBDRA	7	1005 55	W 6		CMP		DODOUG	CLASS "A"	
	Road or				Depth D	SHOL	LDER ①	BACKS	SLOPE ②	BR	IDGE BEF	ſ	SUBDRA RF-19E	IN OUTL		POROUS BACKFILL*	CDLICHED	
ine No.	Lane Ident.	Station t	to Station	Side	<u> </u>	Ciro	m	Size	I "	Size	Type			γ	γ	M-		DEMADIC
	EBL	24+00	24+099	LT	1.1	Size 100			m		A, B, C	m	Station 24+00	100	Type F	Mg 24.7	<b>Mg</b> 0.9	REMARKS
2	EDI .	251.405											24+99	100	E		0.9	
	EBL	25+002	26+50	LT	1.1	100	161.50						25+02 24+50		E	47.2	0.9	
3	EBL	26+50	28+015	LT	1.1	100	180.90						24 +50	100	E	48.5	0.9	
4	EBL	28+015	29+075	LT	1.1	100	175.30						28+15 28+15	100	E	71.5	0.9	
													29+75	100	E		0.9	
5	EBL	29+075	31 + 030	LT	1.1	100	171.80					-	29+75 31+30		E	72.7	0.9	
6	EBL	31+030	32+078	LT	1.1	100	163.50						31+30	100	Ē	70.6	0.9	
7	EBL	32+082	33+071	LT	1.1	100	46.40						32+78 32+82		E F	67.3	0.9	
0	CDI												33+71	100	Ē		0.9	
0	EBL	<i>33+02</i> 3	34+060	LT	1.1	100	149.30						33+23 34+60	100	E F	20.1	0.9	
9	EBL	34+060	36+000	LT	1.1	100	154.90						34+60	100	E	63.1	0.9	
10	EBL	36+000	36+098	LT	1.1	100	111.00						36+00 36+00	100	E	64.4	0.9	
	EBL			1 7									36+98	100	E		0.9	
		37+042	38 +095	<u> </u>	1.1	100	163.20			<b> </b>		70.0	37 +42 38 + 95		E	63.1	0.9	
12	EBL	38+095	40+045	LT	1.1	100	162.10						38, + 95	100	Ē	69.4	0.9	
13	EBL	40+045	41+097	LT	1.1	100	165.30						40 + 45 40 + 45	100	E E	68.6	0.9	· · · · · · · · · · · · · · · · · · ·
													41+97	100	Ē		0.9	
14	FRF	42+003	43+050	LT	1.1	100	158.60						42+03 43+50	100	E F	69.4	0.9	
15	EBL	43+050	44+097	LT	1.1	100	140.70						43+50	100	Ē	67.3	0.9	
16	EBL	45+003	46+020	LT	1.1	100	134.20						44+97 45+03	100	E F	67.3	0.9	
													46+20	100	E		0.9	
17	FRF	46+020	47+040	LI	1.1	100	136.40						46+20 47+40	100	E	54.8	0.9	
18	EBL	89+060	90+642	LT	1.1	100	96.20						89+60	100	Ē	56	0.9	
													90 +42	W				
19	EBL	90+042	92+000	RT	1.1	100	172.80						90+42	100	E	43.3	0.9	
20	EBL	92+000	93+009	RT	1.1	100	120.90						92+00	100	E	72.5	0.9	
													93+09	100	Ē		0.9	
																		Tie in to the existing drain at Sta. 92+50
2/	146/127	14621.430	140/// 0.50	1 7	1 1	100	,							100		00.0		
	146/T37	1462+039	1464+022	LT	1.1	100	189.90						1462+39	100	E	60.2	0.9	
<b>2</b> 2	146/T37	1464+ 022	1465+072	LT	1.1	100	163.60						1464+ 22	100	E	51.9	0.9	
23	146/T37	1465+072	1466+ 055	LT	1.1	100	97.90						1465 + 72 1465 + 72	100	<u>E</u>	52.7	0.9	
3./	146 / 127	146/1 007	1467.10	1 7	4 4								1464 + 55	100	E		0.9	
24	146/T37	1466+ 083	1467+10	LT	1.1	100	33.50						1466+83	100	E I	61	0.9	
<b>2</b> 5	146/T37	1467+10	1468+50	LT	1.1	100	156.30						1467+10	100	E	64.4	0.9	
24	146/T37	1468+50	1468+097	LT	1.1	100	65.80						1468 + 50 1468 + 50	100	E	47.7	0.9	
27	146 / 127	1469+002	1470+40	1.7	1 1	100							1468+97	100	E		0.9	
			1470+40	LT	1.1		155.00						1469 + 02 1470+40		E	43.5	0.9	
28	146/T37	1470+40	1471+50	LT	1.1	100	126.50						1470+40	100	Ē	49.3	0.9	
29	146/T37	1471+50	1472+45	LT	1.1	100	110.90						1471+50 1471+50		E	45.6	0.9	
				1 7									1472+45	100	Ē		0.9	
		1472+51	1473+010	LT	1.1	100	72.40						1472+51 1473 + 10		E	47.2	0.9	
3/	146/T37	1473+010	1474+ 070	LT	1.1	100	174.30						1473+10	100	Ę	64.4	0.9	
32	146/T37	1474+070	1475+ 029	LT	1.1	100	79.30						1474 + 70 1474 + 70	100	E	53.5	0.9	
													1475 + 29	100	Ē		0.9	
<b>3</b> ,3	140/13/	1475'+029	1476+088	LT	1.1	100	179.20						1475 + 29 1476 + 88		<u>E</u>	49.7	0.9	
34/	46/737	1465+028	1466+040	Rt	1.1	100	124.70						1465 + 28	100	Ē		0.9	

# GEOTECHNICAL DESIGN



I hereby certify that this plan was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

Robert L. Stanley

Printed or Typed Name

My license renewal date is December 31, 20 _02_

Pages or sheets covered by this seal: C.11-C.12, Q.01-Q26

DESIGN TEAM ABRAMS/SMITH

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL COUNTY PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

C.11

### PROPOSED SUBGRADE TREATMENT 103-3 (For Additional Details see Soils Survey Sheet No. 0.01 09-27-94 to Q.26.) LOCATION DESCRIPTION QUANTITY AVAILABLE FROM REMARKS Side | Depth | Width Station to Station Material + Shrink % Mg Station to Station Quantity 51+00 T0 55+50 67,570 BORROW 'A' CLAY LOAM & LOAM F+15 + % 51+00 TO 55+50 0.75 9.8 CLAY LOAM & LOAM F+15 + % 67,570 BORROW 'A' 55+50 TO 59+74 0.75 9.8 3584 CLAY LOAM & LOAM F+15 + % 67,570 BORROW 'A' 0.75 60+93.5 TO 62+50 1910 CLAY LOAM & LOAM F+15 + % Vari. 71,590 BORROW 'B' 55+50 T0 59+87.1 3695 67,570 BORROW 'A' 0.75 9.8 CLAY LOAM & LOAM F+15 + % 61+06.6 TO 62+50 Vari. CLAY LOAM & LOAM F+15 + % 1843 71,590 BORROW 'B' 4510 62+50 TO 67+13.8 0.75 CLAY LOAM & LOAM F+15 + % Vari. 71,590 BORROW 'B INCLUDE RAMP 'C' TAPER 1127 68+16.7 TO 69+50 CLAY LOAM & LOAM F+15 + % 71.590 | BORROW 'B 0.75 Vari. 62+50 TO 67+13.5 INCLUDE RAMP 'B' TAPER CLAY LOAM & LOAM F+15 + % 4770 71,590 BORROW 'B' 1128 10 68+16.6 TO 69+50 0.75 9.8 CLAY LOAM & LOAM F+15 + % 71,590 BORROW 'B' 11 69+50 TO 75+50 0.75 Vari. CLAY LOAM & LOAM F+15 + % 6284 71,590 BORROW 'B' INCLUDE RAMP 'A' TAPER 6939 12 69+50 T0 75+50 0.75 CLAY LOAM & LOAM F+15 + % 71,590 BORROW 'B' Vari. INCLUDE RAMP 'D' TAPER 13 75+50 T0 79+50 4457 71,590 BORROW 'B CLAY LOAM & LOAM F+15 + % Vari. 4751 14 75+50 TO 79+50 Vari. Vari. CLAY LOAM & LOAM F+15 + % 71,590 BORROW 'B 15 79+50 TO 84+50 4226 0.75 CLAY LOAM & LOAM F+15 + % 71,590 BORROW 'B CLAY LOAM & LOAM F+15 + % 16 79+50 TO 84+50 4226 0.75 9.8 71,590 BORROW 'B SIDE RD 0.6 8278 CLAY LOAM & LOAM F+15 + % 17 1461+86.47 TO 1469+00 BORROW 'B SIDE RD @ STA 67+/-|Vari. 5343 18 1469+00 TO 1476+50 SIDE RD 0.6 CLAY LOAM & LOAM F+15 + % 71,590 BORROW 'B' SIDE RD @ STA 67+/-Vari. SIDE RD 0.6 19 1476+50 TO 1477+15.85 CLAY LOAM & LOAM F+15 + % 395 8.7 71,590 BORROW 'B' SIDE RD @ STA 67+/-1567+60 TO 1572+40 Vari. MODIFIED SUBBASE RAMP A 0.3 RAMP A Vari. MODIFIED SUBBASE 21 2563+30 T0 2567+36 RAMP B 0.3 RAMP B RAMP C 0.3 Vari. MODIFIED SUBBASE 1276 22 | 3562+30 T0 3567+93 RAMP C 23 4567+75 T0 4572+50 RAMP D 0.3 Vari. MODIFIED SUBBASE RAMP D LIST OF SUBDRAIN WORK

SHRINKAGE	E DAT	A	103-7 09-27-94
COUNTY: PROJECT:		DATE:	-
STATION TO STATION	7.	REMARK	S
MAINLINE & SIDE RAODS RAMPS 'B' & 'C'	30 30		
RAMPS 'A' & 'D' ENTIRE PROJECT	40	ROCK IN RAMP CUT	
		400 CM BOULDERS THIS IS IN ADDITO ROCK EXCAVATION Q	

EMBANKMENT WITH MO	DIST	TURE	CONTRO	09-27-94
Moisture content shall be within the lim of optimum for maximum density w				
LOCATION		DEPTH	COMPACT	REMARKS
Station to Station	Lane	m	m3	MEMANAS
Note:				
Moisture control is required				and the state of t
for all fill placed at a level				
of more than 8 meters below				
profile grade at any location.				
This does include backfill for				
culverts, but excludes				
stability berms beyond the				
normal foreslope template				
line. This shall include but		more	than 8	
not be limited to the		meters	below	
following locations		grade		
Sta. 54+00 to 55+40	Both	Vari	51,135	
Sta 59+40 tp Bridge Abut.	Both	Vari	36,903	
Bridge Abut. To Sta. 62+60	Both	Vari	119,805	

					Refer	to Standa	rd Road Pl	lans RF-3, F	RF-5, RF-19	9A, RF-19	9B, RF-19C,	RF-19E, RF-19	F and RF-2	22				*Not a	bid item 07-15-9
	LOCATION		CONCRETE, C.M.P.,	PE T			RONS		OUTL			CONNEC	TED	TRENCH	GRANULAR	POROUS BACKFILL*	CLASS "A" CRUSHED		
NO.	STATION	TYPE OF INSTALLATION	C.M.P. COATED, PLASTIC OR CLAY	DIA.	LENGTH m	RF-3 No.	RF-5 No.	RF-19E No.	RF-1	No.	RF-22 No.	PIPE JO Type	No.	DRAIN Length m	MATERIAL Blanket m3	Mg Mg	STONE *	REMARKS	
	STA 54+00 to STA 55+40									-					2,940			_t. Side	
	STA 54+00 to STA 55+40														2,940			Rt. Side	
	STA 59+36 to STA 60+40														4,074			_t. & Rt.	
	STA 60+40 to STA 62+65														8,778			_t. & Rt.	
														<del></del>					

METRIC

104-5C



































































## LEGRAND BY-PASS U.S. HIGHWAY #30 BENCH MARKS

BENCHMARK NO.	DESCRIPTION & LOCATION	ELEVATION
3	RR Spike in P. Pole, Sta. 59 + 83±, 8m Rt &	278.769
3A	RR Spike in 8" x 8" Fence Post, Sta. 63 + 97±, 13.2m Rt. &	268.612
38	RR Spike in Newer Corner Post, Sta. 66 + 70, 14.4m Lt &	272.716
3C	RR Spike in P. Pole, Sta. 70 + 41.7, 3.2m Lt &	274.977
<b>3</b> D	RR Spike Corner Post, Sta. 74 + 47.5, 54m Rt &	276.934
5A	RR Spike in P. Pole, East Side, Gravel Road, Sta. 78 + 50, 44.5m Rt &	284.848
<b>5</b> B	RR Spike Fence Post, Sta. 83 + 25, 39.9m Rt ©	277.574
6	Bridge Spike in P. Pole NW Corner Hwy. #30 & Marshall—Tama Co. Line Road Sta. 87 + 40, 10.0m Rt &	264.641



MARSHALL 

SHEET NUMBER







## GENERAL INFORMATION

## HORIZONTAL DATUM

THIS SURVEY IS ADDITIONAL INFORMATION FOR RELOCATION OF US # 30 LE GRAND BY - PASS.

COORDINATES ARE IDENTICAL WITH CLAPSADDLE - GARBER SURVEY AND DISTRICT LAND SURVEYOR.

STATIONING FOR THIS SURVEY WAS OBTAINED FROM ST STA 53+96.592 AHEAD.CONSTRUCTION LINE. THIS STATIONING WAS CARRIED EASTERLY TO EOP.

ST STA 53+96.592 THIS SURVEY = ST STA 53+96.592 AHEAD CONSTRUCTION LINE.

## VERTICAL DATUM

THIS DATUM PLANE IS IDENTICAL WITH CLAPSADDLE - GARBER SURVEY

BM # 500 EL = 278.043 THIS SURVEY =

BM # 500 EL = 278.043 DAVID GUGE SIDEROAD SURVEY = BM # 2 EL = 278.043 CLAPSADDLE - GARBER SURVEY

BENCHMARKS							
No.	602	Sta.	54+37.179	319.15 Lt.	RR SPK.IN E.SIDE COR.POST = BM # 502 GUGE SR SURVEY 266.972		
No.	500	Sta.	54+80.954	144.06 Rt.	RR SPK.N.SIDE PO.POLE  = BM # 2 CLAPSADDLE -  GARBER SURVEY  = BM # 500 GUGE SR SURVEY 278.043		
No.	501	Sta.	59+23.004	307.31 Rt.	RR SPK. IN PO POLE = BM # 3 EL = 278.769		
No.	502	Sta.	63+29.832	221.65 Rt.	CLAPSADDLE - GARBER 278.769  RR.SPK.IN 8"X8"FE.POST = BM # 3A EL = 268.612  CLAPSADDLE - GARBER		
No.	503	Sta.	65+83.606	106.63 Rt.	SURVEY 268.612 RR.SPK.IN NEW COR.POST = BM # 3B EL = 272.716 CLAPSADDLE - GARBER SURVEY 272.716		
No.	504	Sta.	69+86.958	114.77 Rt.	FD RR SPK S SIDE PP RR.SPK.IN PO.POLE  = BM 3C EL = 274.977 CLAPSADDLE - GARBER SURVEY  = BM # 3C EL = 274.977 CLAPSADDLE - GARBER SURVEY		
No.	505	Sta.	73+99.654	176.17 Rt.	RR SPK.IN COR.POST = BM 3D CLAPSADDLE GARBER 276.934		
No. No. No. No.	506 509 510 511 512	Sta. Sta. Sta.	78+59.654 1472+22.239 1474+34.475 1477+86.039 1480+86.892		RR.SPK.IN P.POLE		

s: PROJECTS 84786026492 PHSTS +84090138.901

METRIC

DESIGN TEAM

−nsmith?

12112711288































# TABLE OF OFFSETS AND DROPS FOR 4.8 m RAMP TAPER 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 Distance (m) From Point C Along Line A 14.000 13.333 12.667 12.000 11.333 10.667 10.000 9.333 8.667 8.000 7.333 6.667 6.000 5.333 4.667 4.000 3.333 2.667 2.000 1.333 0.667 0 Offset (m) From Line A To Line C 477 477 481 456 430 405 380 354 329 304 278 253 228 202 177 152 127 101 76 51 25 0 Rise (mm) From Line A To Line C

NOTE: The elevations at edge of taper from BEGIN TAPER to POINT  $\bigcirc$  are established by a constant 3.8% slope across the appropriate taper widths based on the Taper Ratio of 15:1, Drop = (0.038) x (Offset).



SECTION A-A



# GENERAL NOTES:

This detail sheet shows ramp alignment and grade data for the ramp exit pavement.

Materials and methods of construction shall be in accordance with current Standard and Supplemental Specifications.

Ramp exit pavement shall be the same thickness as the mainline pavement. Ramp exit subbase for both A.C.C. and P.C.C. pavement shall be the same thickness as the mainline subbase.

Ramp exit pavement area shown by shaded area is 1345 square meters.

In order to assure proper drainage, any special shaping of exit area between lines A and B shall be accomplished by methods approved by the Engineer.

Refer to Detail Sheet 550-5 for jointing layout.

Refer to typical cross sections and appropriate Standard Road Plans for design details and requirements for shoulders.

- For header construction details at the beginning of taper, refer to the appropriate Typical 7101, 7102, or 7120.
- (2) Refer to detail project plans for ramp alignment and grade data.
- 3 The superelevation cross-slope rate of change is 0.05% per meter. Refer to Standard Road Plan RP-3 and detail project plans for superelevation transition requirements.

GENERAL REQUIREMENTS										
IDENTIFICATION EQUIVALENT STATIONS										
INTERCHANGE	RAMP	0	M							
Reloc. US 30 and Ia 146 at LeGrand	Ramp A	72+30	1572+30							

All dimensions given in millimeters unless noted.

RAMP 'A'
DECELERATION TAPER
FOR 4.8 m EXIT RAMP

DESIGN TEAM ABRAMS/SMITH

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL COUNTY

PROJECT NUMBER NHSX-30-5(166)--3H-64

SHEET NUMBER KO9



## **GENERAL NOTES:**

This detail sheet shows ramp alignment and grade data for the ramp entrance pavement.

Materials and methods of construction shall be in accordance with current Standard and Supplemental Specifications.

Ramp entrance pavement shall be the same thickness as the mainline pavement. Ramp entrance subbase for both A.C.C. and P.C.C. pavement shall be the same thickness as the mainline subbase.

Ramp entrance pavement area shown by shaded area is 1663 square meters.

In order to assure proper drainage, any special shaping of entrance area between lines A and B shall be accomplished by methods approved by the Engineer.

Refer to Detail Sheet 550-5 for jointing layout.

Refer to typical cross sections and appropriate Standard Road Plans for design details and requirements for shoulders.

- 1) For header construction details at the beginning of taper, refer to the appropriate Typical 7101, 7102, or 7120.
- (2) Refer to detail project plans for ramp alignment, grade, profile and superele-
- (3) The ramp pavement cross slope between point (1) and point (F) is determined by superelevation rotated about line "C". Refer to Standard Road Plan RP-3 and the project plans for superelevation transition requirements.

GENERAL REQUIREMENTS									
IDENTIFICATION		EQUIVALENT	STATIONS						
INTERCHANGE	RAMP	Œ	(D)						
Reloc. US 30 and Ia 146 at LeGrand	Ramp D	73+50	4573+50						

All dimensions given in millimeters unless noted.

RAMP 'D' ACCELERATION TAPER FOR 4.8 m ENTRANCE RAMP (e max. = 6%)

6.0 m to 0.6 m Variable 7.219 m to 1.2 m — Variable Base or Subbase (if applicable)-Base or Subbase (if applicable)-SECTION B-B SECTION C-C

DESIGN TEAM ABRAMS/SMITH

Variable

Base or Subbase (if applicable)

SECTION A-A

Variable 🕓

e. RI Carror kalia ind.

Edge Mainline

Pavement Line A

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL

PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

K.10















#### SANITARY SEWER CONSTRUCTION

#### GENERAL

Intent is to supplement sanitary sewer specifications in IDOT Metric Standard Specifications for Highway and Bridge Construction, Series 1995; information shown on sanitary sewer plans supercedes conflicting information found in IDOT Metric Standard Specifications for Highway and Bridge Construction, Series

Reference to percent maximum density: soil density not less than the stated percent of maximum density for soil as determined by ASTM D698 Moisture-Density Relations of Soils, using 5.5-lb. (2.49 kg) Rammer and 12-in. Drop (305 mm) (Standard Proctor Method).

Before installation, verify all measurements including: location of appurtenances and connections to existing sewers; elevations of existing sewers, type and location of joints on existing sewers at points of connection; outside diameter of existing severs; make necessary field measurements to determine pipe laying lengths; work pipe into place without forcing or springing; details of existing pipe not quaranteed.

#### PRODUCTS

Provide new materials unless otherwise indicated.

Granular bedding material: sharp, clean crushed limestone in accordance with IDOT gradation No. 5, Class 2 durability or better; change in gradation may be authorized subject to local availability of materials at time of construction.

Ductile iron pipe (DI): ANSI A21.50 manufactured in accordance with ANSI A21.51; minimum thickness: Class 52, 2.41 MPa working pressure; mechanical joint with stainless steel hardware; coat inside of ductile iron pipe with standard cement lining and bituminous seal coating; ANSI A21.4 and AWWA C104; coat outside of pipe with standard coating; provide mechanical joint within 600 mm of utility access wall where ductile iron pipe extends into utility access; use for sanitary sever pipe where shown on plans.

Fittings for ductile iron pipe: SSB/compact ductile iron, mechanical joint, AWWA C153 and ANSI A21.53, 2.41 MPa pressure rating, except as otherwise specified; coatings to be equivalent to ductile iron pipe specifications.

Wrap all ductile iron pipe with polyethylene film; comply with manufacturer's specifications; polyethylene film: 0.20 mm minimum thickness: black pigmentation; ANSI Á21.5; polyethylene wrap is incidental to sever construction.

Composite double wall plastic pipe (PVC truss pipe): manufactured in accordance with ASTM D2680, composite PVC thermoplastic double wall; gasketed joint: ASTM D2680; seal ends of pipe and fittings watertight and gas tight with solvent cement; use for sanitary sewer pipe where shown on plans.

Sanitary sever utility access: conform to details on plans and IDOT Standard Road Plans; design for depth of bury shown on plans; diameter and thickness of base may be increased by Engineer due to poor foundation conditions; field verify existing sewers prior to manufacture of utility access bases.

Precast reinforced concrete utility access sections; 1.2 m dia.; ASTM C478M except use minimum wall thickness: 125 mm; one cage reinforcing, minimum circumferential reinforcement: 3.81 square centimeters per vertical meter of wall cross section; joints: use rubber ring gasket type, flexible 0-ring gasket; conform with ASTM C443M; provide flexible watertight sewer connection integral with bottom barrel section of utility access; apply 300 mm wide heavy bitumastic coating on outside of utility access at joints around entire perimeter.

Utility access steps: copolymer polypropylene plastic; provide in all eccentric utility accesses spaced 400 mm on center; top step 250 mm below top of cone section; locate 90 degrees; from direction of flow.

Utility access frame and cover: 100T RA-54, Type 2 for all sanitary sever utility accesses.

#### INSTALLATION

#### Excavation:

Strip, salvage and spread topsoil to depth of 0.3 m in accordance with IDOT Section 2105; area of payment to include only that area disturbed by sever construction and located outside of proposed roadway needs line.

Excavate all materials encountered to depth indicated or specified; comply with safety rules of state and federal governments.

Remove spoil not suitable for backfill; waste at disposal area approved by the lowa Department of Transportation; removal is incidental to construction.

Where new work crosses existing utilities or utility services, excavate in advance of pipe laying; determine crossing arrangement including exact construction line and grade.

Minimum sever shoring requirement: equivalent construction procedure to use of "sand box" to provide 2.4 m of vertical protection; provide stacked sand boxes as required to maintain construction within construction limits.

Keep width of trench as narrow as possible and still provide adequate room for backfill and jointing.

Keep sides of trench as nearly vertical as practicable; maintain vertical walls of excavation below top of pipe.

Excavate by hand: under tree roots 75 mm and larger; under and around utilities and where overhead clearance prevents use of machine.

Do all work in the dry; provide for handling of all surface water runoff and groundwater encountered during construction; lay no pipe on excessively wet soil; prevent surface water from flowing into excavation; remove water as it accumulates; devatering operations are incidental to sever construction.

Provide for flow around the section of sewer being worked on: Contractor will be required, if necessary, to provide bypass pumping to handle flows; Contractor shall provide adequate reserve pumps available on site for emergency use; Contractor shall be responsible for damages resulting from backups due to construction operations.

The volume of wastewater which may be encountered is unknown; bypassed flows shall be discharged into originating system downstream of work area; bidder shall be responsible for bypass pumping and shall thoroughly investigate needs and methods; handling and/or bypassing existing sever flows is incidental to sever construction.

Allow no more than 60 m of sever trench to be open at one time; construct utility accesses as work progresses; do not leave trenches open more than 24 hours; protect all open trenches as required by governmental agencies.

#### Bedding:

Bedding for iron gravity sewer (DI) in open cut: lay pipe on 150 mm thick granular bedding material for full trench width; fill around haunches of pipe to 250 mm above bottom of pipe with granular bedding material for full trench width; compact all bedding material by vibration using equipment approved by pipe manufacturer; minimum trench width: 850 mm.

Bedding for composite double wall plastic pipe (PVC truss pipe): install in accordance with ASTM D2321; lay pipe on 150 mm thick granular bedding material for full trench width; fill around and over pipe with granular bedding material to minimum depth of 300 mm above top of pipe bell for full trench width; compact all bedding material by vibration using equipment approved by pipe manufacturer: do not drop pipe bedding material from equipment bucket more than 600 mm above pipe; minimum trench width: 850 mm.

Compact granular bedding material by rodding or slicing with shovel; provide bell holes at each pipe joint in granular bedding material; granular bedding material is incidental to sever construction.

Trench excavated below required grade: backfill to proper elevation with granular bedding material at no additional cost.

Notify Engineer immediately when unstable material is encountered which may not provide a suitable foundation for pipe; remedial measures may be recommended if foundation is considered unsuitable for sever construction.

### Pipe Laying:

Carefully protect pipe joints from injury while handling and storing pipe; use no deformed, gouged or otherwise impaired joints; clean bell and spigot surface of dirt and foreign matter before jointing pipe; make joints in strict accordance with manufacturer's recommendations.

Make all necessary field measurements to accurately determine sever make-up lengths or closures; begin at lowest point in line; lay groove or bell ends pointing upstream; keep pipe free of all dirt and foreign material; clean sewer if necessary to remove dirt and foreign material at no additional cost; provide a smooth and uniform invert; bear spigots against bell shoulders; pull joints together with equipment recommended by pipe manufacturer; do not use backhoe to push joints together.

Sanitary Sewer line and grade: provide, install and operate laser light equipment for line and grade control; provide and install detection equipment to constantly monitor laser light to prevent movement or drift of light from line and grade; check line and grade of each pipe with laser light; provide spot check with level instrument minimum 3 times per day; continuously check alignment of sever by flashing light between utility accesses or between last piece of pipe laid and opening at downstream utility access; correct misalignment, displacement or otherwise defective sewer at no additional cost. Sanitary Sewer Utility Access:

Secure frame and adjusting rings to upper section of utility access to prevent movement or entry of water: drill two 25 mm dia. holes through flange of IDOT RA-54, Type 2 frame and adjustment rings to accommodate two 13 mm dia. anchor bolts, equally spaced on 800 mm dia, circle; grout frame in place; securing frame and adjusting rings to upper section of utility access is incidental to construction.

Provide concrete adjusting rings on utility accesses as necessary to place cover at grade or to required elevation; provide two adjusting ring minimum; maximum height of utility access adjustment using adjusting rings: 300 mm; secure to upper utility access section; make joints with bituminous jointing material to prevent entry of water.

#### Backfilling:

Backfill trench and structures immediately after location of connections and appurtenances has been recorded and testing has been completed.

Use no large stones, large clods, organic matter, rubbish, frozen or unsuitable materials in backfill; backfill simultaneously on both sides of pipe and structures to prevent displacement.

Provide compacted backfill for all trenches; backfill above bedding material with excavated material in layers not to exceed 150 mm; moisten if required; compact to 95% maximum density with moisture content between -1% to +3% of optimum; hand place and carefully compact backfill less than 300 mm over top of pipe; backfilling sewer trench with moisture and density control is incidental to construction.

Fill upper 300 mm portion of trench with salvaged topsoil where construction area is to be seeded; shape trench backfill to original grades.

#### Testing:

Employ approved independent testing laboratory to show that construction materials comply with specifications; submit duplicate copies of reports by an independent laboratory showing compliance of construction materials with specifications.

Provide all samples required for laboratory tests; cost of all sewer testing including transportation charges on samples is incidental to sever construction.

Incorporate no materials until laboratory tests have been furnished which show compliance.

All materials subject to sampling, testing, inspection and rejection at project site.

If test results do not meet those specified, make necessary corrections and repeat tests to demonstrate that test requirements are satisfied at no additional cost.

Provide soil tests necessary to determine optimum moisture-density relationship and the suitability of materials for compaction.

Provide compaction tests on all trench backfill: ASTM D698; 3 tests per 50 m of trench where compacted backfill is specified; at each location 2 tests at intermediate depths and 1 test at surface; provide all necessary excavations to allow compaction tests to be taken.

Allowable leakage in sanitary sever: maximum allowable infiltration or exfiltration for any new sanitary sever section, including all utility accesses is 188 liters per centimeter of pipe diameter per kilometer of pipe per day; utility accesses shall be tested separately.

Sanitary sewer leakage test: conduct all infiltration and exfiltration tests after backfill for sewer line and utility accesses is complete; test sewer lines by low pressure air testing: isolate and test all sections of pipe between utility accesses; install plugs in accordance with manufacturer's recommendations; allow no one in utility accesses during testing; wet line by flushing to produce consistent results; plug and brace all stoppers to resist test pressure; test duration for 375 mm dia. Pipe is 7 minutes; the pressure holding time is based on an average holding pressure of 20.68 kPa gauge or a drop from 24.13 kPa to 17.24 kPa gauge; add air to the line segment being tested until the internal air pressure of the sewer line is raised to approximately 27.58 kPa gauge greater than the average back pressure of any groundwater that may be over the top of the pipe; at least 2 minutes shall be allowed for the air pressure to stabilize; when the pressure has stabilized and is at or above the starting test pressure of 24.13 kPa gauge, commence the test; record the drop in pressure for the test period; if the pressure has dropped more than 6.89 kPa gauge during the test period, the line is presumed to have failed; test may be discontinued when the prescribed test time has been completed, even though the 6.89 kPa gauge drop has not occurred.

In areas of known groundwater above the pipe section being tested, the total height of water in meters above the pipe shall be multiplied by 52.1 to establish the gauge pressure that will be added to all readings; for example, if the height of water is 2 meters then the added pressure will be 104.20 kPa gauge; this increases the 24.13 kPa gauge to 128.33 kPa gauge and the 17.24 kPa gauge to 121.44 kPa gauge; allowable drop and test duration remain

Utility access vacuum test: test all utility accesses in accordance with ASTM C1244; plug all lift holes with non-shrink grout; temporarily plug all pipes entering utility access; place test head at top of utility access in accordance with the recommendations of the testing equipment manufacturer; a vacuum of 10" (254 mm) of mercury shall be drawn from utility access; turn off testing equipment and close testing equipment valves; measure and record time for vacuum to top to 9" (229 mm) of mercury; a passing test occurs when 9" (229 mm) of mercury is maintained longer than the following: minimum duration for utility access equal to or less than 3 meters in depth is 30 seconds: minimum duration for utility access greater than 3 meters in depth, but less than 7 meters in depth is 60 seconds; complete necessary repairs to utility accesses that fail test; repeat test until utility access passes test.

Television inspection of sanitary sewers: final inspection of completed project may be made by closed circuit system if sever does not meet construction specifications and defects cannot be determined by standard procedures such as lamping, infiltration, exfiltration, vacuum and deflection testing; if defects are found by TV inspection, correct to conform to specifications; cost of televising, repair or reconstruction at expense of Contractor.

Provide deflection test 30 days after backfill of trench is completed for all plastic sanitary sewer lines; maximum allowable deflection: 5%; run rigid ball or mandrel without mechanical pulling device through sewer; diameter of ball or mandrel equal to 95% of inside pipe diameter.

#### Surface Restoration:

Fertilize, seed and mulch all areas in accordance with IDOT section 2601; area of payment to include only that area disturbed by sever construction and located outside of proposed roadway needs line.

# METRIC STANDARD ROAD PLANS

105-4 09-27-94

The following Sta	andard Road Plans	shall be considered	d applicable to co	instruction work on	this project.
NUMBER	DATE	NUMBER	DATE	NUMBER	DATE
RA-51	10-28-97				
RA-53	10-28-97				
RA-54	3-26-96				



I hereby certify that this plan was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa. Helicourt

Signature H. Robert Veenstra Jr. Printed or Typed Name

My license renewal date is December 31, 2002

Pages or sheets covered by this seal: M.01 - M.04

IOWA DOT * OFFICE OF DESIGN

PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

M.01

METRIC DESIGN TEAM VEENSTRA & KIMM, INC.

MARSHALL COUNTY

		ESTIMATED PROJECT QUANTITIES	- DIVISIO	DIVISION 2 100-1A 07-15-97											
ITEM NO.	ITEM CODE	CODE 1TEM			TOTAL	AS BUILT QUAN.	AN.	Data listed below is for informational purposes only and shall not constitute a basis for any extra work orders.						ers.	
1	2105100100	TOPSOIL STRIP SALVAGE+SPREAD		M3	550		ITE NO	TE ITE	EM CODE			DESCRIPTIO	)N		
2	2504 060375	DUCTILE IRON SAN SWR 375 MM		М	92.725			<u> </u>				The state of the s			
3	2504 200375	PLASTIC SAN SWR 375 MM		M	193.697		1	2105	5-100100	Includes area along new sewer route located outside of proposed		, <b>l</b>			
4		SAN SWR UTILITY ACCESS (PRECAST) (RA-51)		EACH	4				r	roadway needs line disturbed by sewer construction; width of area to be stripped shall not exceed 2.5 times the depth of cut from existing				rea to	
		CONSTRUCTION SURVEY		LS					t	be stripped	d shall not e	xceed 2.5 time	es the depth of	of cut from ex	cisting
6	2533100000			LS	1 2 22				9	surface to	bottom of se	wer pipe.			
/		SEED+FERTILIZE (RURAL)		HA	0.33			2504	4-060275	laaludaa a					
8	2601104200	MULCH		HA	0.33		'	2504	4-060375	inciudes ex	cavation, di	sposal of unsu	ultable or exc	ess excavation	on,
<del></del>										dewatering fittings r	, nandring ex molvethylene	isting sewer f wrap, compacte	niows, granula ed backfill u	ar bedaing, pi	ipe,
										density cor	ntrol and tes	ting.	CO DOCKI [11 W	I CIT HIO IS CUITE O	
					<del></del>					•		•			
							3	2504	4-200375	Includes ex	kcavation, di	sposal of unsu	uitable or exc	ess excavatio	on,
										dewater ing	, handling ex	isting sewer f	flows, granula	ar bedding, pi	ipe,
					· · · · · · · · · · · · · · · · · · ·						compacted bac	kfill with mo	isture and der	isity control	and
			<del></del>						'	testing.					
<del></del>							<b>—</b>   4	2504	4-420510	Includes ex	cavation. di	sposal of unsu	uitable or exc	ess excavatio	on.
									0	dewater indi	. handling ex	isting sever f	flows, precast	t concrete uti	ilitv
									į ā	access, ste	eps, adjustme	nt rings, spec me, waterproof	cial invert sh	naping, frame	and
									l o	cover, anch	noring of fra	me, waterproof	fing, compacte	ed backfill wi	ith
									n	iioisture ar	na aensity co	ntrol and test	ting.		
							5	2526	6-001000	Includes va	erification o	f existing ut:	ility playatio	nns and locati	ions
									2 331333	and all sta	aking for san	f existing ut itary sewer co	onstruction.	nis and rocati	10.13
							6	2533	3-100000	Includes mo	obilization o	f labor, equip	pment and mate	rials to proj	ject
									\$	site for se	ewer construc	tion.			
								2501	1-101100	loc ludos -	ena alono con	coupe marita	located autor	la accessed ==	and unit
							<b>—  </b>   ′	2001		needs line	disturbed by	sewer route sewer constru	iocaleu outsio	ie proposed ro	Dauway
									'		3.3 to. 5 to 6 by	30201 00113010	00 0 10111		
					<del></del>		8	2601	1-104200	Includes a	area along ne	w sewer route	located outs	ide proposed r	oadway
										needs line	disturbed by	sever constru	uction.		
			<del>-</del>		<del></del>										
							<b>-  </b>								
	10T 0F 141	104-5A	]								05 0444				
L	121 OF IN	TAKES AND UTILITY ACCESSES								LIST	UF SANI	TARY SEV	MEK LILE		•
															L
		TYPE OR FORM BOTTOM	LINE		LOCATION	T	YPE	PIPE	LENGTH	SLOPE		FLOW LINES		PIPE	
IUMBER	LOCATION		NUMBER -				<b> </b> 01	IAMETER		Z.	INLET	OUTLET	OTHER	PROFILE	NOTE
		ROAD PLAN Elev. Elev.	I MONDER	Fron	n	To		mm	m		Elevation	Elevation	Elevation	SHEET NO.	
	Sta. 86+20.609		1) P-2B	2B		2A Pla	stic	375	120.000	-0.15	261.630	261.450		M.02	Verify existing pipe elevation and
Of	fset 31.228 Lt.		<u> </u>						1.20.000	<b>T</b>		1		11.02	Total y existing pipe elevation and
20 14	C+= 04+0E 220	D2 D4 51 204 220 261 515 5-2-4-4-4-1-2-2	P-2C	2C		2B Pla	stic	375	73.697	-0.15	261.741	261.630		M.01 & M.02	
ZR WF	Sta. 84+95.230	R2 RA-51 264.330 261.515 Eccentric long cone (	14	······································						1					

NUMBER	LOCATION	TYPE OR STANDARD ROAD PLAN	FORM GRADE Elev.	BOTTOM WELL Elev.	NOTE	
2A	ML Sta. 86+20.609 R2	RA-51	262.550	261.285	Flat top (	(1)
	Offset 31.228 Lt.					
28	ML Sta. 84+95.230 R2	RA-51	264.330	261.515	Eccentric long cone (	1)
	Offset 41.976 Lt.					
2C	ML Sta. 84+17.616 R2	RA-51	264.360	261.630	Eccentric long cone (	(1)
	Offset 39.212 Lt.					
20	ML Sta. 84+17.604 R2	RA-51	265.212	261.115	Eccentric long cone (	1)
**. ***********************************	Offset 53.513 Rt.					

(1) Frame and cover: RA-54 Type 2

11	P-2C	2C	2B	Plastic	375	73.697	-0.15	261.741	261.630		M.01 & M.02	
-41												
<b>-</b> 11	P-2D	20	2C	Ductile	375	92.725	-0.44	262.224	261.816		M.01	Verify existing pipe elevation and location
1)				Iron	·····							
										<del>_</del>		
			<del> </del>			<u> </u>						
1)			<del> </del>									
				ļ								
			<u></u>					·				
				1								
			·									
			·									
												·
								: :				
				1								

DESIGN TEAM VEENSTRA & KIMM, INC.

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL COUNTY

PROJECT NUMBER NHSX-30-5(166)--3H-64

SHEET NUMBER



NHSX30-5(166) FRIT 2 OF Z







































14-311 -2000 15:04

s:\PR0JECTS\64030030A92\Solls\k64030166.019

1





















									Т	ABULA	ATION	N OF		_ATE				AND AD	JUSTI	MENT	S									107-30 04-25-00
STATION	TEMPLATE CUT	TREAT-	AND EAF		TOPSOIL DRESS DRESSING MATE	SING S	ELECT PAV SOIL RE	'EMENT 'MOVAL	ROCK			ROCK ADJUSTED	B & R00	ADJUSTE W ROCK,B8 K & SHAL	ED LW TEMPL LE F	PL	OWING E AND IAPING	NTRNACE EARTH WORK	BRIDGE G BERMS B	BLANKETS	FILL FOR TOPSOIL DRESSING	ROCK	\$UBGRADE TREAT- MENT	ADJUSTED FILL		( FILL	E			
51+50.000 51+60.000 51+80.000 52+00.000		+0	70		1 3 3	1 3 3			-L S	UITABLE	TUTAL	TUTAL		TOTA	4:	364 352 101	+F	+F	+F	<u>+r</u>	29 136 169		73 294 294	3922 5638	30	509	9 9			
52+20.000 52+40.000 52+60.000 52+80.000					2 2 3	2 2 3				2					7 6 4	171 142 003 134 242					189 188 172 145 114		294 294 294 294	6660 5537 3695	30 7 30 5 30	865 719 3 480	8 8 4			
53+00.000 53+20.000 53+40.000 53+60.000	68	33		670	35 46 15					119 147 32 672					20	970 761 035 711				447	70 62 103		294 261 261 294 294	639 438 1638	30 31 31 31	83 56 0 212	9 9			
53+80.000 54+00.000 54+20.000 54+40.000				1925 2965 3545 3455	2 2 2 5					1927 2967 3547 3460					8 12 15	185 016 598				1283 1977 2363 2303	199 249 293		294 294 294 294 587	8975 13450 17374	30 31 31 31		8 4 7			
54+80.000 55+00.000 55+20.000 55+40.000				2980 2435 1865	2 3 3					2982 2438 1868 793					18 16 13	022 205 923 755				1987 1623 1243 527	314 301 282		294 294 294 294	19401 17233 14590	30 31 31 31	2522 2240 1896	1 3 7			Overhaul =
55+60.000 55+80.000 56+00.000 56+20.000 56+40.000				, , , ,	3 2 3 3	1 2 3				3					9! 7: 5:	587 592 850 297				JET	245 223 193 160		294 294 294 294	9048 7075 5363 3843	3 3 3 3 3 3 3 3	1176 1 919 1 697	2 8 2			601,424 ST-M
56+60.000 56+80.000 57+00.000 57+20.000	122 941	44 191 294			138 175	3 117 375 545				104 895 2062					1	748 196 230					125 74 19 -1		294 250 103	2329 872	30 2 30 3 30 1 30	302 3 113 3 14	8			+80.00
57+40.000 57+60.000 57+80.000 58+00.000	<u> </u>	294 242 112 17			156	572 480 249 58				2250 1319 352 12					1	111 509 259					9 40 84		52 182 277	287 898	30 30 7 31 31 31	0 6 0 37 0 116	7			
58+20,000 58+40,000 58+60,000 58+80,000					3 3 3	3 3									3 5	012 593 481 137 289					117 129 146 173 202		294 294 294 294 294	2170 3041 4670	3( 1 3( ) 3(	282 2 282 3 395 3 607	3 1			0verhaul = 424,578 ST-M
59+00.000 59+20.000 59+40.000 59+60.000				3243 3243 3243 3243	3 3 2 3	3 3 2 3				3243 3243 3243 3243					9 11 14	458 713 139 511				2432 2432 2432 2432	227 256 287		294 294 296 299	11369 13595 15988	31 5 31 3 31	1478 1767 1767 2078 12384	0 4 5			
59+80.000 60+00.000 60+80.000 61+00.000 61+20.000				3243 4654 4654	2 5 2 2	2 2 2 2				3243 3 4654 4654					17 25 21 25	084 000 413 079				2432 3188 3188	366 1509 354 371		223 660 260 343	18927 22831 23987 27553	7 30 1 30 7 30 8 30	2460 2968 3118 33581	5 0 3 9			+40.00
61+23.250 61+40.000 61+60.000 61+80.000				4654 4654 4654 4654	2 2 2	2 2 2				4654 4654 4654 4654					23 24 23	650 962 285 128 944				3188 3188 3188 3188	344 350 335		28 154 381 407	26652 26742 25574	2 30 2 30 4 30	1006 0 3464 0 3476 0 3324	8 5 6			
62+00.000 62+20.000 62+40.000 62+60.000					2 2 2	2 2 2									20 18 16	271 267 012 455					320 300 275 248 222		433 459 485 510 538	19512 17507 15254	2 30 7 30 4 30	2754 2 2536 3 2275 3 1983 3 1650	6 9 0			
62+80.000 63+00.000 63+20.000 63+40.000					3	3									10 8 5	868 591 353 657					196 170 111 61		574 617 475 301	10098 7804 4767	3 30 4 30 7 30	0 1312 0 1014 0 619	7 5 7			
63+60.000 63+80.000 64+00.000 64+20.000	8 84 182	20 34 18			8 25 36	32 68 64				4 75 172					1 1 1 2	817 406 559 274					64 72 75 79		294 273 262 275	1459 1061 1222 1920	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 189 0 137 0 158 0 249	17 19 19			
64+40.000 64+60.000 64+80.000 65+00.000 65+20.000	337 734 1316 1807	6 27 59 42			48 69 94 117	67 127 233 310				324 703 1236 1656					2 2 1 2	752 433 957 167					92 98 105		287 268 235 252	2381 2073 1624 1810	1 30 3 30 4 30 0 30	0 30° 0 26° 0 211 0 235	5 5 1 3			
65+40.000 65+60.000 65+80.000 66+00.000	2307 2307 2522	6			214	317 304 344 469				1913 2152 2356 2482 2720					5 5	263 643 5281 039					121 145 153 150		288 294 294 294	4204 4834 4595	1 3	0 546	55 4			
66+20.000 66+40.000 66+60.000 66+80.000	1911				278 300 324	518 549 605 650				3136 3574 4063 4541					3 3 2	410 722 204 880 727					143 134 125 122 119		294 294 294 299 297	3294 2785 2459	4     3       5     3       3     3	0 516 0 428 0 362 0 319 0 300	12   1   17			
67+00.000								1													· · · · · · · · · · · · · · · · · · ·								CHEET NUME	

DESIGN TEAM ABRAMS/SMITH

METRIC

																	TAE	3UL	.ATI	ON	OF	- T							IES and RL-		ID A	DJU	UST	MEN	NTS	3		· · · · · · ·																17-30 -25-00
STATION	EMPLA C	TE UT	GRADE TREAT- MENT +0		WING AND APING +C	ENTRNA EAF WO		S TO	OPSOIL ESSING +0	DRES	PSOIL SSING ERIAL -C	SELE S(	ECT PAN DIL RE	EMENT MOVAL	F	ROCK	ADJU E SUIT	ARTH CUT	R Unadji		R	ARD OCK TED		& W F	ADJUS ROCK,E & SHA	3&W T	EMPLA FI	TE	PLOWING ANI SHAPING	ון	RNACE EARTH WORK +F	BE	IDGE (	GRANUL BLANKE	ETS	ILL FOF TOPSOIL RESSING	_	ROCK FILL	( TR	RADE REAT- MENT -F	ADJUS	STED	PERCEN SHRIN	NT SU NK	JUSTE JITABL FILL SHRIN	E +								
67+00.000 67+20.000 67+40.000	52 66 50	63 98 000 54							366 483 1102	3	717 988							4912 6193									27 14 4									124 66 18	6			295 147		2372 222 273		30 30 30	308 158 35	4 9								
67+80.000 68+00.000 68+20.000	84 72 66	54 47 30							446 373 349	3	795 671 632					76 55 97		6102 8029 6894 6250 5528		8 3 22		8 3 22		68 52 75		76 55 97	14 23 22	19								14° 116 115	9	68 52 97	2	147 294 294	1	055 896 750		30 30 30	137 246	2							0verha 1,723, ST-	,480
68+40.000 68+60.000 68+80.000	46	47 30 114 42 24							325 303 280	3	567 524 497					144 97 18		5528 4924 4389	· · · · · ·	37 16		37 16		107 81 18		144 97 18	20 19 18	89 49								11 107 103	7	144 97 19	7	294 294 294	1	540 451 387		30 30 30	227 200 188 180	6								
69+00.000 69+20.000 69+40.000	39 32 25	78 89 34 43							258 236 212	3	438 380 324					1		3797 3145 2422					,	1		1	16 13	02									B 2	11	L	294 294 294	1	199 009 911		30 30 30	155 131 118	9								
69+60.000 69+80.000 70+00.000 70+20.000	110	60 35							16	5	269 235 206							1490 925 629									14 15 15	43 95 15								10	0			279 264 279	1	154 331 236 094		30 30 30	150 173 160	0						+80.0	00 -	
70+40.000 70+60.000 70+80.000	50 3	65 13 00									175 125 54							390 188 46									13 13 15 23	87 17 35												293 295 295	1	240		30 30 30	142 132 161	9								
71+00.000 71+20.000 71+40.000		4									9							-5									35 ¹	58 95												293 294 294	3	264 301		30 30 30	269 424 559	3								
71+60.000 71+80.000 72+20.000											3							-3 -3									51: 49: 85 34:	29 17 40												294 294 588 294	7	835 635 929		30 30 30	628 602 1030 409	8								
72+40.000 72+60.000 72+80.000		26 81					**************************************				3 33 63							-3 -7 18									34	67 45												463 611 571	3	134		30 30 30	390 407 342	5 4								
73+00.000 73+20.000 73+40.000 73+60.000 74+00.000	17	22 14 98									58 54 57							64 60 41									320 270 270 250	94				********								534 502 474	2 2 2	2638 2263 2201 120 156		30 30 30	294 286 275	2 1 6							0verha	aul =
74+20.000 ├──	28	72 99 80	46 201 330 348								114 131 283 471							58 14 198 690										26 73 63 44												870 350 169 24		723 194 20		30 30 30	410 94 25	0							292,3 ST-	316 ·M
74+40.000 74+60.000 74+80.000 75+00.000 75+20.000	162 242 326	26 81 22 14 98 72 99 80 31 23 20 67 46 94 98 01 56	342								550 522 527							1421 2240																								20		30 30 30					-					
75+40,000 75+60,000 75+80,000	40 ⁴ 43 ⁹ 48 ⁹	46 94 98	336 330 324 318								537 524 543							3076 3839 4194 4673																										30 30 30										
76+00.000 76+20.000 76+40.000			312 306 304 299								614 612 600 693						!	5099 5350 5920 6605																										30 30 30										
76+60.000 76+80.000 77+00.000 77+20.000 77+40.000	80° 92° 996	99 97 45 67 04 37 61 36	294 294								792 851 806							7599 8688 9455																										30 30 30										
77+40.000 77+60.000 77+80.000	970 850 740	04 37 61	294 294 294 294	1							696 677 653							9302 8154 7102																-										30 30 30								+60.0	00 +	
77+60.000 77+80.000 78+00.000 78+20.000 78+40.000 78+60.000	57	54	295 295 293 293								574 551 579 615							6557 6158 5468 4457																										30 30 30										
78+60.000 78+80.000 79+00.000 79+20.000	36° 23° 14	79 92 35 16 73 89	295 294 161								620 537 376							3367 2092 1201									3:	39												133		206 795		30 30 30	26	8								
79+40.000 79+60.000 79+80.000	11 ⁷ 98 70	73 89 07	15 2 1								250 203 179							938 788 529									10	74 14												279 292 293	1	946		30 30 30	103 184 253	9								
80+00.000 80+20.000 80+40.000 80+60.000	2 12 30	43 10 25	2								158 113 99							285 97 26 164									28 33 35 31	19												294 294 294 292	] 3	2512 3047 3225 2818		30 30 30	326 396 419 366	3							0verha	aul =
80+80.000 81+00.000	58 80 81	43 10 25 02 81 02 78	56 128 151								140 196 230 271							441 700 758									23 15	48 44 44												238 166 143	1	378 701		30 30 30 30	274 179 91	3						-	0verha 280,3 ST-	335 -M
81+20.000 81+40.000 81+60.000 81+80.000	9 78 49	16 88 97	221 273 166								332 334 247							805 727 416									3	16 24 58 55												73 21 128		243 103 230 609	,	30 30 30	31 13 29	6 4 9								
81+80.000 82+00.000 82+20.000 82+40.000 82+60.000	29 10 2 2	16 88 97 93 63 15	48 11								167 107 87 97							174 67 128 175							-		89 15 23 33	40 86 97												246 283 294 294	1 2	609 257 2092 3103		30 30 30 30	79 163 272 403	4								
			ABI	RAMS	S/SM	IITH					,,,	METRIC			I	OWA D	OT *	0FF	ICE OF	DES	IGN	1								M	ARS	HAL	L	COUN	NTY	PRO	JECT	NUMBE	ER .				5(16				4			SHE	ET NUM	BER	T	.02

			ATE QUANTITIES AND ADJUS	STMENTS	107 <u>-30</u> 04-25-00
STATION TEMPLATE CUT MENT SHAPING WORK  82+60.000 82+80.000 83+00.000 83+20.000 83+40.000 83+60.000 83+70.878 83+80.000 84+00.000 84+00.000	GRANULAR BLANKETS TOPSOIL DRESSING SELECT PAVEMENT DRESSING MATERIAL SOIL REMOVAL +C +C -C -C -C -C  92  93  99  101  98  45  99		ADJUSTED ROCK, B&W TEMPLATE AND EARTH BERN SHALE FILL SHAPING WORK TOTAL +F +F +F -    4557 5500 5984 6153 6070 3239 2638 5422	SUBGRADE   SUBGRADE   SUITABLE   SUITABLE   SHRINK   SH	
1567+80.000 1568+00.000 1568+20.000 1568+40.000 1568+60.000 1568+80.000 1569+00.000 1569+20.000 1569+40.000 1569+80.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000 1570+00.000	130 357 133 368 133 344 128 334 122 326 116 336 111 332 109 351 107 363 105 345 105 313 102 302 96 283 85 210 48 88	66 3463 19 19 47 88 3672 36 36 52 240 3576 145 145 95 225 3437 135 135 90 40 3318 12 12 28 22 2951 1 1 1 2 8 2593 8 2296 2034 1815 1655 1405 990 452 82	66 88 240 225 40 22 8 8 25 270 825	30 30 -1 1 30 30 30 30 30 30 -1 1 -1 30 30 -1 30 30 30 30 30 30 30 30 30 30	Overhaul = 130,648 ST-M
1571+20.000 1571+60.000 1571+80.000 1572+00.000 1572+20.000 2563+40.000 2563+60.000 2564+00.000 2564+20.000 2564+20.000 2564+40.000 2564+40.000 2564+40.000 881	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1434 1918 2169 2269 2366 2275 1582 848 253 14	55         167         47         556         30         723           67         347         47         973         30         1265           70         47         1801         30         2341           69         47         2053         30         2669           68         47         2154         30         2800           69         47         2250         30         2925           71         47         2157         30         2804           30         30         2804         30         30           10         47         1481         30         1925           39         47         762         30         991           16         34         203         30         264           11         3         30         4           -1         1         30         1	Overhaul = 42,536 ST-M  Overhaul = 18,476 ST-M  +66.98
2564+60.000 2564+80.000 2565+00.000 2565+20.000 2565+40.000 2565+60.000 2565+80.000 2566+00.000 2566+20.000 2566+40.000 2566+40.000 2566+80.000 2566+80.000 2566+80.000 2566+80.000 2567+00.000 2567+20.000 2567+20.000	97 207 106 225 114 222 119 231 121 266 119 269 116 248 112 243 108 255 100 250 90 220 81 176 76 166	1893 2543 3224 3689 3765 3490 3088 2655 2125 1473 822 415 623		1	Overhaul = 0 ST-M
3563+60.000 3563+80.000 3564+20.000 3564+40.000 3564+80.000 3565+00.000 3565+20.000 3565+40.000 3565+80.000 11 3565+80.000 11 3565+80.000 11 3565+80.000 3565+80.000 3565+80.000 3565+80.000 3565+80.000 3565+80.000 3565+80.000 3565+80.000 3565+80.000 3565+80.000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	948 1181 1543 2008 2179 1907 1555 1489 1822 2342 2654  MARSHALL	50	Overhaul = 209,648 ST-M +48.56 +48.56

TABULATION OF TEMPLATE QUANTITIES AND ADJUSTMENTS  Refer to Standard Road Plans RL-1A and RL-1B													
3566+20.000 3566+20.000 3566+40.000 3566+80.000 3567+00.000 3567+20.000 3567+40.000 3567+60.000 3567+60.000	MENT SHAPING 14  15  18  16  38  14  12  37  38  47  17  47  69  47  76  47	ARTH BLANKETS TOPSOIL DRESSING DRESSING DRESSING MATERIAL +C +C +C -C 17 22 34 57 68 73 111 143 141 265 139 303 128 291 119 284 114 297	SELECT PAVEMENT ROCK EARTH CUT UN CUT	HARD HARD ROCK ROCK, BADJUST ADJUST ADJUSTED ROCK & SHATOTAL TOTAL TOTAL	8&W TEMPLATE  AND  EARTH  BER ALE FILL SHAPING WORK	GE GRANULAR FILL FOR MS BLANKETS TOPSOIL ROCK DRESSING FILL +F +F -F -F 114 93 65 28 3	SUBGRADE TREAT- MENT -F  47 2336 30 47 1778 30 47 974 30 33 273 30 10 8 30 30 30 30 30 30 30 30	DJUSTED UITABLE FILL + SHRINK 3037 2311 1266 355	Overhaul = 0 ST-M				
4567+80.000 4568+00.000 4568+19.993 4568+40.000 4568+60.000 4568+80.000 4569+00.000 4569+20.000 4569+40.000 4569+60.000 4569+80.000 4569+80.000 4569+80.000	73 59 51 53 83 47 01 47 13 47 63 47 79 47	99     262       100     256       96     220       93     195       94     208       96     222       96     209       94     187       88     184       74     154       51     22	39 2130 76 2472 60 2196 35 1911 17 1929 5 1969 1966 1833 1328 614		39 76 60 35 17 5	-1 -1 1 1 4 13	30 30 1 30 -1 30 30 30 30 30 30 30 30 30 30	1 1 -1	0verhaul = 72,760 ST-M				
4570+00.000 4570+20.000 4570+40.000 150 150 150 150 150	1.2 1 7 50 28 30 55 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	51 82 40 45 36 42 30 33 27 29 12 13 1 1 1 1 2	198 145 122 77 53 21 1 1 1 1 1 2		132 184 264 415 502 812 1508 2248 2456 2086 1612 1290 1112	19 83 24 113 29 23 40 45 24 42 84 78 65 51 50	30       30         47       30         47       165       30         47       328       30         47       410       30         47       741       30         47       1419       30         47       2117       30         47       2331       30         47       1974       30         47       1511       30         47       1192       30         46       1016       30         30       30	215 426 533 963 1845 2752 3030 2566 1964 1550 1321	+20.00				
1462+60.000       114         1462+80.000       145         1462+99.996       18         1463+19.996       65         1463+24.975       205         1463+39.996       136         1463+50.949       118         1463+79.998       206         1463+99.999       183         1464+19.999       153	178 31 183 35 47 35 137 39 95 8 78 26 171 32 162 33 153 37 147	3 3 4 15 4 15 12 8 7 2 2 2 2 11 12 18 25 19 26	34     259       34     264       35     292       35     333       9     122       26     328       19     223       16     187       34     365       34     332       35     300       35     262       35     208		108 154 188 190 34 101 73 10 56 163 202 241 252 240 275	43 46 52 55 10 27 17 12 36 40 44 45 41	4 61 30 16 92 30 19 117 30 14 121 30 1 23 30 8 66 30 11 55 30 9 35 30 9 35 30 26 101 30 35 127 30 41 156 30 43 164 30 49 150 30	79 120 152 157 30 86 72 46 131 165 203 213 195	Overhaul = 0 ST-M				
1465+60.000       1465+80.000       1466+80.000       1466+20.000       1466+40.000       1466+60.000       1466+80.000       1466+80.000       1467+00.000       1467+20.000	71 213 98 94 73 119 96 183 93 183 97 183	19     24       17     24       21     27       34     49       54     94       55     102       49     86       58     89       86     163       122     274       50     108       58     96       81     104       70     97       109     183       152     253	35     150       35     185       20     234       3     215       333     331       1     331       18     286       35     327       35     522       35     1397       15     919       21     1433       35     2661       35     3044       35     3861       35     4712		419 101 55  715 192  1154 160  1312 144  1321 142  1141 172  642 105  230  19	41 48 60 72 71 68 62 43 19 2	57       177       30         88       439       30         147       700       30         182       1060       30         183       1202       30         193       1202       30         185       1066       30         125       579       30         57       154       30         13       4       30         30       30         30       30         30       30	230 571 910 1378 1563 1386 753 200 5	+83.01				
1467+39.999 1467+60.000 1467+80.000 1468+00.000 1468+20.000 DESIGN T	76 183 88 183 88 183 88 88 88 88 88 88 88 88 88 88 88 88 8	152 224 152 207 115 151	35 4712 35 4952 35 5001 37 4714 ETRIC IOWA DOT * OFFICE	OF DESIGN	MARSHALL	COUNTY PROJECT NUMBER	NHSX-30-5(166)	-1 -1 3H-64 SHEET N	NUMBER T.04				

	,												TA	BUL	OITA	N OF						TIES		AD	JUST	MENT	ΓS											107-30 04-25-00
TATION	EMPLATE CUT		PLOWING AND SHAPING +C	EARTH	BLANKE	ETS TO	PSOIL SSING I	TOPSOII DRESSING MATERIAL	G SE	LECT PA SOIL F	VEMENT EMOVAL -C				ROC UNADJUS	K RO	ARD OCK TED	B & W	ADJUST	ED &W TEMPI LE	LATE	PLOWING AND SHAPING +F	ENTRN/ EAF	ACE E RTH DRK +F	BRIDGE G BERMS B	GRANULAI BLANKET:	RFILL F S TOPSO DRESSI F	DIL		JBGRADE TREAT- MENT -F	ADJUST			ADJUSTED SUITABLE FILL + SHRINK				
20.000 = 39.999 = 60.000 =	3766 3359 2463	183 183					71 79	118	5 8		37 37			3898 3466 2525																			30 30 30					verhaul = 160,636
74.042 - 80.000 - 00.000 - 20.000 -	1138 3767	61 226		·			44 159	252	8		11			1164															:				30 30					ST-M
4∩.∩∩∩	3284 2814	204 180					134 115	20 18	1		35 35			3864 3386 2893														-1				1	30 30	1				
60.000 80.000 00.000 20.000 40.000 60.000	2156 1300 522	176 169 153					74	150 105 54			35 37 39			2244 1401 718		+					2 53	101		15				4		2	1	54	30 30 30	200			+00.00	
20.000 - 40.000 -	1300 522 137 92	116 45	184 138				21 36	47	7		38 18			373 222							367 915	184						28 57		39 101	8	84 95	30 30	629 1164				
60.000 - 75.765 -	79 52		71				35 26	62 42	2					123					1		1258 1109 320	71						73 67 20		139 106 28	9	17 149 172	30 30 30	1452 1234				
80.000 <del>-</del> 00.000 -	65						32 29	5:	7					40							1529							92		129	13	108	30	1700				
20.000 - 40.000 - 60.000 -	21	5					24		1 6		4			32							1402 1093 734							74 51		126 125 119	5	90 94 64	30 30 30	733	B			
80.000 80.000 	92 62	91					29 18	18	8		21 34			91							438 252							28		85 28	3	25 02 23	30 30	423 263	}			
40 <b>.</b> 000	120 174 66 92	114					35 13	2: 4 1:	1		34 34 14			202 243 90		-					91 51							10				81 42	30 30 30	160 105 55				
48.000 — 60.000 — 80.000 —	106	104					17 18	24	4 1		21			127 172							116							22 38				94 67	30 30	122 217	<del></del>		0	verhaul
00.000 <del> </del> 20.000	124 189 350 600	104 104					19	18	8		34 35			195 265							184			101				36 24			1	48 93	30 30	192 251				10,712 ST-M
40.000 60.000 80.000	600 755	104 104 104		86			65 74	8	<del></del>		35 35 39			653 880							36 6			90				1				29 95 45	30	124 59				
-0.000 -	545 190 34			00			66				38 34			593 246							21 127			75			}	3		10	_	18 06	30	23 138	3			
20.000 40.000 60.000 80.000	34	42 1					19	17	7 4		19 2			59 5							373 712							29 54		61 102	2	83 56 26	30 30	368 723	}			,
89.000 ⊢		1.4					1				10			3							1107 631 741							77 42 53		104 49 46	5	126 140 142	30	1204 702				
00.000 20.000 40.000 60.000	49	77					2	40	9		34 35			94 456							947							83		27	8	37 105	30	1088 397	<del></del>			
60.000 - 80.000 -	1224	104 104					88 111	114 150	0		35 41			1267 2150										103								.03	30 30	134	h			
80.000  - 00.000  - 20.000  -	2251 1671	104 104					97 77	167 127			43			2262 1709 1114			•																30					
40.000 — 60.000 — 80.000 —	564	104 104		60			53 32	7:	3 5		43			665 335							13 81			65				10 31				68 50	30 30	88 65	3			
00.000 00.000 14.464	266 130 85	104 76					18 17		3		21 48			223 127				735- 7. 4			187 120							46 23			+	97	30 30	183 126	3			+
																																	30					
15 405																																						
15.495 — 27.366 — 33.589 — 40.000 —	227 116						34 17							261 133																			30 30					
60.000 -	117 358 84						49							407																			30					
64.726 80.000	310 620			243			40							350 931										142							1	42	30 30	185	5			
80.000 00.000 20.000 40.000 60.000	824 877						82 85							906 962																			30 30				0	verhaul
60.000 – 80.000 –	875 783 596						84							959 863							1 1											1 1	30	1				124,700 ST-M
00.000 <del>-</del> 20.000 -	438 411						67 66							669 505 477							7 8											3 7 8	30 30 30	4 9 10	) )			
40.000 60.000	493 672						71 79							564 751							4											4	30 30	5				
00.000	962 1305						90 97							1052 1402																			30 30					
80.000 00.000 20.000 40.000 42.353 60.000	1429 158 985			277			100 12 81							1529 447 1066				· · · · · · · · · · · · · · · · · · ·						65								65	30 30 30	85	5			
60.000	700						01				T	1		1000					<u></u>				1		<b>ALL</b>							0-5(			1	1	 NUMBER T	

									TABUL	ATION OF		ATE QUAN Standard Road Plan			ADJUS	TMENTS	<b>3</b>						107-30 04-25-00
STATION	IPLATE TRE CUT MI	ADE PLOWING AT- ANE ENT SHAPING +C +C	EARTH	BLANKETS	TOPSOIL DRESSING	TOPSOIL DRESSING MATERIAL	SELECT PAVEME SOIL REMOV	AL .	ADJUSTED EARTH CUT SUITABLE	ROCK ROCK UNADJUST ADJUSTED	B & W	ADJUSTED ROCK.B&W TEMP	PLOWIN	NG ENTRNACE	BERMS	GRANULAR F BLANKETS D	ILL FOR TOPSOIL PRESSING	\$UBGRADE ROCK TREAT- FILL MENT	- ADJUSTED	PERCENT SHRINK	ADJUSTED  SUITABLE  FILL + SHRINK		
9004+60.000 9004+80.000 9005+00.000 9005+20.000	702 321 104 37				78 61 41			V	780 382 145			TOTAL	1 30 110	83			5		1 113 105	30	1 1 147 1 137	-	+00.00
9005+40.000 9005+60.000 9005+80.000	109 175 172 242				24 31 42 42				140 217 214				240 261 240				12 19 22 16		171 221 239 224	30	291		
9006+19.908 9006+20.000 9006+40.000	1 159				21 41 37				263 1 200				118 1 259 282				6 16 20		112 1 243 262	30 30 30	146 1 1 316 3 341		
9004+60.000 9005+00.000 9005+20.000 9005+40.000 9005+60.000 9005+80.000 9006+00.000 9006+20.000 9006+40.000 9006+80.000 9007+20.000 9007+40.000	124 88 65 51				33 28 26 32				121 93 77				302 313 289 220				24 26 23		278 287 266	30	361 373 346		0verhaul = 360 ST-M
9007+40.000 9007+60.000 9007+80.000 9008+00.000	54 111 274 424		166		43 57 70				86 154 497 494				220 114 40 38	60			14		206 110 100 38	30	143		
9008+20.000 9008+40.000 9008+60.000	439 387 332 289		34		70 67 65 63				509 454 397 386				38 14 1	66					38 14 1 67	30 30	18		
9008+80.000	118				31				149				1						1	30	1		
1300+00.000 1300+20.000	33								33				2						2	30			<u> </u>
1300+40.000 1300+60.000 1300+80.000 1301+00.000	30 39 48 38								39 48 38				12 16 25						12 16 25	30 30 30	16 0 21 0 33		0verhaul = 4,580 ST-M
1301+20.000 1301+40.000 1301+60.000 1301+80.000	14								14				82 177 310 317						82 177 310 317	30 30 30	230 0 403 0 412		+00.00
1302+00.000 1302+20.000 1302+40.000 1302+60.000	22 58 45								22 58 45				175 59 4 21						175 59 4 21	30 30 30 30	5		
1302+80.000 1303+00.000 1303+20.000	9 3 83 258								9 3 83 258				104 109 25						104 109 25	30	142		Overhaul = O ST-M
1303+40.000 1303+60.000 1303+80.000 1304+00.000	258 426 527 558 139								426 527 558 139											30 30 30 30			1
1304+05.000 1304+10.000 1304+15.000 1304+20.000	135 127 117								135 127 117											30 30 30			
															2000				2000				
4121+79.926 4121+99.926 4122+19.927 4122+39.928 4122+59.930 4122+79.934	28 29 19								28 29 19				90		2000	J			2000	30 30			
4122+59.930 4122+79.934 4122+82.232 4122+99.939	7 40 8 87	3 7 1 13						1 3	9 44 9 99				192 128 6 50	122				14 2 10	3 186 2 236 2 4 0 40		307		
4123+19.946 4123+39.956 4123+59.966 4123+75.975	129 141 162 165	10							139 142 162 165		,		116 198 257 225					28 29 29	3 170 3 228	30 30 30 30	127		0verhaul = 254,243 ST-M
4123+75.975 4123+79.977 4123+99.985 4124+19.991 4124+39.995	51 288 264 164	2 8 7							51 290 272 171				225 56 258 258 322					23 18 22	50 3 235 3 240	30	306	·	
4124+39.995 4124+47.960 4124+59.998	36 35								36 35				154 285					17	1 143 7 268	30	186		
DES	SIGN TEAM A	ABRAMS/S	MITH	· · · · · · · · · · · · · · · · · · ·		ME	TRIC	IOWA D	OT * OFF	ICE OF DESIGN				MARS	HALL	COUNTY	PROJEC	T NUMBER NF	ISX-30-	-5(16	6)3H-64	SHEET NUMB	BER <b>T.06</b>

18-SEF-2001 08:32

	TABULATION OF TEMPLATE QUANT Refer to Standard Road Plans RL		107-30 04-25-00
SUBGRADE PLOWING ENTRNACE GRANULAR TOPSOIL STATION CUT MENT SHAPING WORK DRESSING MATERIAL +C +C +C +C +C +C +C -C	SELECT PAVEMENT ROCK EARTH ROCK ROCK B & W ROCK, B & W	PLOWING ENTRNACE BRIDGE GRANULAR FILL FOR SUBGRADE  E AND EARTH BERMS BLANKETS TOPSOIL ROCK TREAT- ADJUSTED PERCENT SUITABLE  L SHAPING WORK DRESSING FILL MENT FILL SHRINK FILL +  +F +F +F -F -F -F -F SHRINK	
2047+40,000		284 284 369	
2047+40.000 2047+80.000 2048+00.000	250 261 204 209	8     29     2589     30     3366       0     29     2011     30     2614	
2047+40.000 2047+80.000 2048+00.000 2048+20.000 2048+40.000 2048+60.000 2048+80.000 2048+80.000 2049+00.000 396 21	189       7     131       88     72       267     33	06 29 1867 30 2427 29 1281 30 1665	Overhaul =
2049+20.000 2049+40.000 2049+60.000 2031	417 11	3	379,676 ST-M
2050+40.000	306 9 763 1214 1273	18   78   30   101	
2050+80.000 2050+80.000 2051+00.000 2051+20.000 785 19	1341 1278 1278 804 275	30   30   30   30   30   30   30   30	
2051+60.000 2051+80.000 2051+80.000 2052+00.000 7 7 7	45 20 23 19 14 17 13 12	18     186     30     242       19     7     192     30     250       15     175     30     228	
2052+20.000 2052+40.000 2052+60.000 2052+80.000 15	12 7 14 4 15 1		
2084+00.000			
2084+20.000 2084+40.000 2084+60.000 78 2084+60.000 81	88       88       78       81	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
2085+00.000 2085+20.000 2085+40.000 2085+40.000 35	94 85 1 57 5 40 9	3     3     30     4       9     19     30     25       33     50     30     65       93     11     82     30     107       19     17     122     30     159	
2085+80.000 2086+00.000 2086+20.000 2086+20.000 34	30     13       27     19       28     25       34     29	17   122   30   137   134   14   155   168   30   218   155   169   226   30   294   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169   169	Overhaul = 19,049
2086+60.000 2086+80.000 141	60     27       87     20       141     13       208     10	12     29     173     30     225       131     29     102     30     133       100     29     71     30     92	ST-M
2087+40.000 2087+60.000 2087+80.000 2088+00.000 120	258       280       232       120       28       44       38	29 151 30 196	
2088+20.000 2088+40.000 2088+60.000 2088+60.000	38 36 39 26 55	35     29     356     30     463       96     29     367     30     477       59     760     29     1290     30     1677       30     30     30     30	
55+25.000	9207		<u></u>
55+50.000     17855     1347     2540       55+75.000     25687     1377     2463       56+25.000     33008     1407     2234	8397 481 16181 3693 20908 5553 26628	8	
36+23.000     40341     1452     2282       56+50.000     46553     1491     2255       57+00.000     47509     1543     2563       57+25.000     40605     1560     2637	5160 34351 45789 48628 46489	30 30 30 30 30 30 30 30 30 30 30 30 30 3	Overhaul = O ST-M
56+75.000       46553       1491       2255         57+00.000       49480       1522       2374         57+25.000       40605       1543       2563         57+75.000       31878       1534       2496         58+00.000       22896       1464       2341	39528 30916 22019	MARSHALL         COUNTY         PROJECT NUMBER         NHSX-30-5(166)3H-64         SHEET NUMBER	

STATION 58+00.000	TEMPLATE CUT	<b>+</b> €	PLOWING AND SHAPING +C	ENTRNACE EARTH WORK +C	GRANULAR BLANKETS +C	TOPSOIL DRESSING +C	-C	SELECT SOIL -C	PAVEMENT REMOVAL -C	ROCK	DJUSTED EARTH CUT L SUITABLE	ROCK	HARD	B & WIR	DJUSTED	TEMPLATE	PLOWING	ENTRNACE EARTH	BRIDGE GF BERMS BL +F	_ANKETS T	L FOR OPSOIL ESSING -F	ROCK FILL -F	SUBGRADE TREAT- MENT -F	ADJUSTED FILL	PERCENT SHRINK	ADJUSTED SUITABLE FILL + SHRINK				Q4-:
8+00.000 8+25.000 8+50.000 8+75.000 9+00.000	13509 7791 6988 6159					1365 961 573 539	2328 1645 943 874				12546 7107 6618 5824										1			-1	30 30 30 30 30					
5+50.000 5+75.000	14716					732 879	1010				14438 25023														30					
5+00.000 5+25.000 5+50.000 5+75.000 7+00.000	14716 25498 31754 34403 35673 37111 37979 36339					885 889 895 900	1544 1490 1456 1404	2419 10946 9577 7799 7705 7606			28676 22856 25535 28808 29922										-1 1 -1			1 -1	30 30 30 30 30	1 1 1 1 1				
5+50.000 5+75.000 5+00.000 5+25.000 5+25.000 7+00.000 7+25.000 7+50.000 7+75.000 8+00.000 8+75.000 8+75.000 8+75.000	36339 32435 27186 21340 16855					882 848 816 806 790 771	1175 1121 1004 969 913	7606 7376 5134 1625			28406 24754 21854 19536 16713														30 30 30 30 30					Overha O ST-N
3+75.000 3+75.000 3+25.000 3+25.000 3+50.000 3+75.000 3+00.000	13665 10691 7044 3646 1656 584					743 718 650 500 312	714 624 465 290				13612 10695 7070 3681 1678										-1			-1	30 30 30 30 30	1 -1		•		
)+00.000	J04					134	136				582														30					
										]																				
																											1			



Direction of Marking



REAR FACING SIGNS

#### **GENERAL NOTES:**

- 1. The arrow panel on the paint truck and the lead pickup should normally be in the caution mode. A yellow strobe or revolving light may be substituted for this arrow panel.
- 2. The lead pickup may be driven in the traveled lane.
- 3. All signs shall have an orange background with black legend.
- 4. Flagger(s) should be used at primary road junctions or as necessary to control traffic.
- 5. Arrow panels shall meet the requirements of a Type 'C' Arrow Display as specified in the MUTCD and current Standard and Supplemental Specifications.
- 6. Detail Sheet 520–41 may be used in place of this detail sheet.

# For Maintenance Use Only

All dimensions given in millimeters unless noted.

1				
	M	Project Developme	ent Divis	ion
	NO	DETAIL SHEET	520	<b>)_40</b>
	VERSION	REVISION: Add_note_indicating_"For_MaintenanceUse_Only."	REVISION NO.	REVISION DATE
	METRIC	TRAFFIC CONTR FOR CENTERLINE MA ON TWO-LANE ROAL	RKINGS	<b>;</b>

DESIGN TEAM ABRAMS/SMITH

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL COUNTY

PROJECT NUMBER NHSX-30-5(166)--3H-64

SHEET NUMBER U.01



Direction of Marking



REAR FACING SIGNS

#### **GENERAL NOTES:**

- 1. All signs shall have an orange background with black legend.
- 2. Flagger(s) should be used at primary road junctions or as necessary to control traffic.
- 3. Arrow panels shall meet the requirements of a Type 'C' Arrow Display as specified in the MUTCD and current Standard and Supplemental Specifications.
- 4. This layout may be used to place centerline pavement markings. When used to paint centerline markings, the "EDGELINE PAINTING AHEAD" sign shall be changed to a "CENTERLINE PAINTING AHEAD" sign. A "WET PAINT" sign shall be mounted on the vehicle behind the paint truck.
- 5. A yellow strobe or revolving light may be substituted for this arrow panel.

All dimensions given in millimeters unless noted.

Project Development Division

DETAIL SHEET 520-41

REVISION: Add_"CENTERLINE" to title_block.

TRAFFIC CONTROL FOR EDGELINE
AND CENTERLINE MARKINGS
ON TWO-LANE ROADWAYS

DESIGN TEAM ABRAMS/SMITH

IOWA DOT * OFFICE OF DESIGN

13-AUG-2001 07:36 | Shive2 | S:\PROJECTS\64030030A92\Design\k64030166.U01 | SHEET NUMBER | U.O2





#### **GENERAL NOTES:**

- 1. This layout represents traffic control for survey instrument or other survey work that results in persons or equipment operating near the centerline of the roadway.
- 2. The position of the warning signs may be adjusted in the field to compensate for unusual alignment profile.
- 3. 'A' and 'B' distances are to remain as near minimum values as work permits. However, to be able to move the work area without moving the advance signing, 'A' and 'B' values may be varied within the limits of the Table. Maximum movement can be achieved by setting one 'A' or 'B' value at the minimum and the other value at its maximum.
- 4. An observer is required to warn workers in the traffic lane of approaching traffic.
- 5. When another person is required outside of the signing setup, (e.g. for a survey target) a separate signing setup may be necessary unless the traffic lane can be vacated to accommodate traffic.



All dimensions given in millimeters unless noted

All	din	nensions given in millimeters unless r	noted.	
1	И	Project Developme	ent Divis	ion
1	5	DETAIL SHEET	<u>520</u>	<u>)-48</u>
	VERSION	REVISION: Metric conversion of Detail Sheet 520-48  Dev (dated 5-10-88).	REVISION NO.	REVISION DATE Q6-Q6-95
METDIC V	MEIRIC V	SIGNING LAYOUT SURVEY INSTRUMENT NEAR THE CENTER	r work	

DESIGN TEAM ABRAMS/SMITH

**LEGEND** 

Traffic Sign

Instrument Person

O Cone (minimum 700 millimeters high)

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL

NHSX-30-5(166)--3H-64

SHEET NUMBER

U.03

13-AUG-2001 07:36

s:\PROJECTS\64030030A92\Design\k64030166.U01

COUNTY

PROJECT NUMBER





#### **GENERAL NOTES:**

- 1. This layout represents traffic control for survey instrument or other survey work that results in persons or equipment operating in the traffic lane.
- 2. The position of the warning signs may be adjusted in the field to compensate for unusual alignment profile.
- 3. Traffic in the open lane shall be allowed to flow freely. The flagger shall stop the first vehicle in the closed lane from the position shown, then cross the traffic lane to stop other vehicles.
- 4. Speed Limit refers to the legal speed limit in miles per hour before construction.
- 5. A second flagger shall be required:
  - a) if the flagger's view of approaching traffic in the open lane is less than 400 meters or the work site is in an area of restricted sight distance (such as a "No Passing" Zone); or
  - b) if excessive traffic delays are encountered.

- 6. "A" and "B" distances are to remain as near minimum values as work permits. However, to be able to move the work area without moving the advance signing, "A" and "B" values may be varied within the limits of the Table. Maximum movement can be achieved by setting one "A" or "B" value at the minimum and the other value at its maximum.
- 7. When another person is required outside of the signing setup (e.g. for a survey target), a separate signing setup may be necessary unless the traffic lane can be vacated to accommodate traffic.

All dimensions given in millimeters unless noted.

	<b>U</b>		
M	Project Developme	ent Divis	ion
ON	DETAIL SHEET	<u>520</u>	<u>)-49</u>
S	REVISION: Metric conversion of Detail Sheet 520-49	REVISION NO.	REVISION DATE
	new_(dated_5-10-88).	Иеж	06-06-95
METRIC VERSION	SIGNING LAYOUT SURVEY INSTRUMENT REQUIRING LANE CL	WORK	

DESIGN TEAM ABRAMS/SMITH

750 X 750

METRIC

IOWA DOT * OFFICE OF DESIGN

MARSHALL

COUNTY PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

**U.04** 

13-AUG-2001 07:36 kblive2 s:\PROJECTS\64030030A92\Design\k64030166.U01

Work Area

**LEGEND** 

Traffic Sign

Instrument Person

Cone (minimum 700 millimeters high)

Flagger with Stop/Slow Paddle





# WELLS GREATER THAN 450 mm IN DIAMETER AND LESS THAN 30 m DEEP IN SOIL

# **ARTESIAN WELLS**



One Producing Aquifer Class 2 Wells



**EXISTING WELL** 

SEALED WELL

More Than One Producing Aquifer

WELLS LESS THAN 450 mm IN DIAMETER

AND ALL WELLS IN BED ROCK

MARSHALL

PROJECT NUMBER

NHSX-30-5(166)--3H-64

SHEET NUMBER

**U.06** 

ABRAMS/SMITH IOWA DOT * OFFICE OF DESIGN METRIC

13-AUG-2001 07:37

s:\PROJECTS\64030030A92\Design\k64030166.U02

Any well no longer in use shall be sealed. Details shown hereon are intended to depict the various standard methods used for sealing water wells. All materials and methods used shall be in accordance with lowa Code Section 567, Chapter 39, Requirements for Plugging Abandoned Wells. Wells shall be sealed by a certified well contractor.

Approved Sealing Materials are: 1) Neat cement (1.7 kilograms cement per liter of water); 2) Graded bentonite, bentonite pellets or bentonite grout; 3) Sand cement grout (1 sack of cement/equal volume masonry sand /not more than 23 liters water); 4) Concrete.

Approved Fill Materials are: 1) sand, 2) pea gravel, 3) Class A, B or C Granular Surfacing Material, 4) agriculture lime All materials shall be free of foreign matter and any toxic residue.

Regardless of the material used in the process, the sealing (filling) material should be introduced at the bottom of the well, or at the interval to be sealed (or filled) and placed progressively upward to the top of the well. All sealing materials shall be placed by the use of grout pipe, tremie pipe, cement bucket or dump bailer, in such a way as to avoid segregation or dilution of the sealing materials. Bentonite pellets or graded bentonite may be added as sealing material by pouring in place and agitating to avoid bridging.

Recommended Plugging Procedures: The entire well bore must be filled with one or a combination of the above materials. All obstructions must be removed from the well. For all (deep) wells, neat cement shall be placed from 3 meters below the bottom of the casing to 3 meters above the bottom of the casing or to the static water level, whichever is higher. For wells completed in multiple aquifers, this same procedure shall be re-used throughout subsequent aquifers. The upper portion of the well casing shall be cut off at least 1.2 meters below ground or construction level. The upper 2 meters of the remaining casing shall be plugged with neat cement.

Price bid for "Sealing Wells" shall be considered full compensation for furnishing all material and work necessary to completely seal wells as detailed hereon as well as noted on detail project plans or as directed by the Engineer.

1) Minimum thickness of 6 meters. Place a minimum of 3 meters above and below bottom of casing.

All dimensions given in millimeters unless noted.









16-AUG-2001 13:01

s:\PROJECTS\64030030A92\Design\k64030166.c05

NHSX-30-5(166)--3H-64

SHEET NUMBER









### GENERAL NOTES:

128.82 FT IT IS THE INTENT OF THIS DESIGN TO CONSTRUCT A 3.0 m X 1.8 m X 39.010 m REINFORCED CONCRETE BOX CULVERT SKEWED 15° AT STATION 1465+75.00 (O.R.).

UTILITY COMPANIES AND MUNICIPALITIES WHOSE FACILITIES ARE SHOWN ON THE PLANS OR KNOWN TO BE WITHIN THE CONSTRUCTION LIMITS SHALL BE NOTIFIED BY THE CONTRACTOR OF THE CONSTRUCTION STARTING DATE.

THE RCB CULVERT SECTIONS ARE DESIGNED FOR MS18 LIVE LOAD AND EARTH FILLS OF 2100 mm. SEE BELOW

WHEN DE-WATERING PRESENTS A PROBLEM FOR PLACING THE CURTAIN WALLS AS DETAILED, ALTERNATE METHODS SUCH AS STEEL SHEET PILE AND PRECAST CONCRETÉ WALLS MAY BE APPROVED BUT AT NO ADDITIONAL COST. THE CULVERT CONTRACTOR IS TO SUBMIT TO THE ENGINEER FOR APPROVAL COMPLETE DRAWINGS OF THE PROPOSED CURTAIN WALL ALTERNATE BEFORE BEGINNING CONSTRUCTION.

THE CONTRACTOR IS ENCOURAGED TO TAKE FULL ADVANTAGE OF SPECIFICATION 1105.15 -- VALUE ENGINEERING INCENTIVE PROPOSAL. A PAMPHLET AND CONCEPTUAL PROPOSAL FORM WILL BE AVAILABLE AT THE PRECONSTRUCTION CONFERENCE.

THE CLASS 20 EXCAVATION QUANTITY IS BASED ON THE ASSUMPTION THAT AT THE START OF CULVERT CONSTRUCTION, THE EXISTING GROUNDLINE SHOWN ON THE "SITUATION PLAN" ON DESIGN SHEET 2 HAS REMAINED UNDISTURBED AND NO ROADWAY FILL HAS BEEN PLACED.

ALL ELEVATIONS ON THESE PLANS SHOWN IN METERS (m).

ALL STATIONS SHOWN IN METERS (m).

FOR DESIGN STRESSES, SPECIFICATIONS AND OTHER GENERAL NOTES, SEE STANDARD SHEET "MRCB-GI-95."

THIS PROJECT MEETS THE CRITERIA TO ALLOW THE POSSIBLE USE OF A PRECAST REINFORCED CONCRETE BOX, AT THIS LOCATION, IN LIEU OF THE CAST IN PLACE CULVERT SHOWN IN THESE PLANS. IF THE CONTRACTOR CHOOSES TO PURSUE THIS OPTION, A VALUE ENGINEERING PROPOSAL SHALL BE SUBMITTED AFTER THE CONTRACT IS AWARDED. THE PROPOSAL SHALL INCLUDE COMPLETE DETAILS OF THE DESIGN AS WELL AS THE REQUIREMENTS LISTED IN SECTION 1105.15 OF THE STANDARD SPECIFICATIONS.

EXCESS CLASS 20 EXCAVATION MATERIAL SUITABLE FOR BACKFILLING SHALL BE STOCKPILED AT THE CONSTRUCTION SITE, AS DIRECTED BY THE ENGINEER.

ANY CHANNEL EXCAVATION BEYOND THE INLET OR THE OUTLET ENDS OF THE CULVERT IS TO BE DONE BY OTHERS AND IS NOT PART OF THIS CONTRACT

THE BID ITEM "REMOVAL OF EXISTING STRUCTURES" IS TO INCLUDE THE REMOVAL OF THE EXISTING CULVERT AND EXISTING PIPE. REMOVAL IS TO BE DONE BY THE CULVERT CONTRACTOR IN ACCORDANCE WITH SECTION 2401 OF THE STANDARD SPECIFICATIONS. THE CULVERT CONTRACTOR SHOULD NOTE THE TYPE OF STRUCTURES NOTED FOR REMOVAL IS UNKNOWN AND SHOULD BE VERIFIED AS TO THE TYPE OF STRUCTURE.





8" WALLS & SLABS

NOTE: THE ROADWAY WILL BE CLOSED THE TRAFFIC CONTROL PLAN SHOWN

POLLUTION PREVENTION PLAN IS SHOWN ELSEWHERE IN THESE PLANS.

FOR DETAILS AND NOT THE FOLLOWING IOWA I		
STANDARD	ISSUE DATE	LATEST REVISION
MRCB-GI-95	JULY 1995	12-5-96
MFWH 15-2-95	JULY 1995	1-1-98
MFWH 15-6-95	JULY 1995	
MFWH 15-7-95	JULY 1995	
MFWH 15-8-95	JULY 1995	1-1-98
MRCB 3000-1-95	JULY 1995	

DESIGN HISTORY AT THIS SITE DES. NO. TYPE OF WORK 1098 NEW CULVERT



6'-0**"** 

12"x12" | HAUNCH

DESIGN AND ANALYSIS IS PERFORMED ON ACPA "BOXCAR" COMPUTER PROGRAM, VERSION 2.00 DESIGN IS FOR HS-20 LIVE LOAD

 $A_s7 = 0.19 \text{ in}^2/\text{ft}$ 

 $A_s 4 = 0.19 \text{ in}^2/\text{ft}$ 

 $A_0 3 = 0.49 \text{ in}^2/\text{ft}$ 

 $A_{5}8 = 0.19 \text{ in}^{2}/\text{ft}$ 

2x8 W4.0/W2.5 x 6'-8"

2x8 W9.0/W4.0 x 10'-8"

18"--

2x8 W4.0/W2.5 x 9'-4"-

CONCRETE STRENGTH  $f'_c = 5,000 \text{ PSI}$ REINF. YIELD STRENGTH  $f_Y = 65,000 \text{ PSI}$ REINFORCING WEIGHT = 700 LBS.

PRODUCT WEIGHT = 11.1 TON / 6' SECT.



# STRUCTURAL DESIGN

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

Gordon L. Port Printed or Typed Name

My license renewal date is December 31, 2002 Pages or sheets covered by this seal: Design Sheets / &

10 FT X GFT DESIGN FOR 15° SKEW RA PRECAST 3.0 m X 1.8 m X 39.010 m REINFORCED CONCRETE BOX CULVERT

GENERAL NOTES AND QUANTITIES STATION: 1465+75.00 APRIL 2001

MARSHALL COUNTY

IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION DESIGN SHEET NO. 1 OF 2 FILE NO. 29138 DESIGN NO. 1098

DESIGNED BY ____STEVE FISHER __ CHECKED BY ___DARWIN BACKOUS DETAILED BY STEVE FISHER CADD FILE h641098,s01

MARSHALL COUNTY

PROJECT NUMBER NHSX-30-5(166)--3H-64 SHEET NUMBER 1.08

